		ST DEPARTMENT DIVISION C	OF NA					FORI					
APPLI	CATION FOR P	PERMIT TO DRIL	L				1. WELL NAME and Greater N	NUMBER Ionument Butte E-25	5-8-16				
2. TYPE OF WORK DRILL NEW WELL (REENTER P&A	WELL (DEEPE	EN WELL	. ((1)			3. FIELD OR WILDO	AT IONUMENT BUTTE					
4. TYPE OF WELL Oil We		I Methane Well: NO					5. UNIT or COMMUN	NITIZATION AGRE	EMENT NAME				
6. NAME OF OPERATOR	WFIELD PRODUCT	TON COMPANY					7. OPERATOR PHON						
8. ADDRESS OF OPERATOR	: 3 Box 3630 , Myt	ton, UT, 84052					9. OPERATOR E-MAIL mcrozier@newfield.com						
10. MINERAL LEASE NUMBER (FEDERAL, INDIAN, OR STATE)		11. MINERAL OWN					12. SURFACE OWNE						
UTU-67170		FEDERAL (INC	DIAN () STATE (FEE (DIAN STATE	~ ~				
13. NAME OF SURFACE OWNER (if box 12							14. SURFACE OWNE						
15. ADDRESS OF SURFACE OWNER (if box			16. SURFACE OWNE	R E-MAIL (if box 1	.2 = 'fee')								
17. INDIAN ALLOTTEE OR TRIBE NAME (if box 12 = 'INDIAN')	ION FROM		19. SLANT										
,	ion) NO 🛈		VERTICAL DIR	ECTIONAL 📵 H	ORIZONTAL (
20. LOCATION OF WELL	FOO	TAGES	Q1	r-QTR	SECTIO	ON	TOWNSHIP	RANGE	MERIDIAN				
LOCATION AT SURFACE	629 FSL	631 FWL	9	swsw	24		8.0 S	16.0 E	S				
Top of Uppermost Producing Zone	213 FSL	238 FWL	9	SWSW 24			8.0 S	16.0 E	S				
At Total Depth	10 FNL	10 FWL	N	WNW 25			8.0 S	16.0 E	S				
21. COUNTY DUCHESNE		22. DISTANCE TO N		T LEASE LINE (Feet)			23. NUMBER OF ACRES IN DRILLING UNIT						
		25. DISTANCE TO N (Applied For Drilling	g or Co		TH : 6658 TVD: 6658								
27. ELEVATION - GROUND LEVEL 5449	2	28. BOND NUMBER	WYB0	000493			29. SOURCE OF DRI WATER RIGHTS AP	LLING WATER / PROVAL NUMBER I 43-7478	F APPLICABLE				
		A	TTACH	IMENTS									
VERIFY THE FOLLOWING	ARE ATTACHE	D IN ACCORDAN	ICE WI	ITH THE U	TAH OIL A	ND G	AS CONSERVATI	ON GENERAL RU	ILES				
WELL PLAT OR MAP PREPARED BY	LICENSED SURV	EYOR OR ENGINEE	R	СОМ	IPLETE DRII	LLING	PLAN						
AFFIDAVIT OF STATUS OF SURFACE	OWNER AGREE	MENT (IF FEE SURF	ACE)	FOR	4 5. IF OPE	RATOR	IS OTHER THAN TH	IE LEASE OWNER					
☑️ DIRECTIONAL SURVEY PLAN (IF DI DRILLED)	R HORIZONTALLY		№ торо	OGRAPHICA	L MAP								
NAME Mandie Crozier		TITLE Regulatory	Tech			PHON	PHONE 435 646-4825						
SIGNATURE	DATE 01/27/2010				EMAII	_ mcrozier@newfield.	com						
API NUMBER ASSIGNED 43013502330000		APPROVAL				B	aggill						
						Pe	Permit Manager						

API Well No: 43013502330000 Received: 1/27/2010

	Proposed Hole, Casing, and Cement												
String	Hole Size	Casing Size	Top (MD)	Bottom (MD)									
Prod	7.875	5.5	0	6658									
Pipe	Grade	Length	Weight										
	Grade J-55 LT&C	6658	15.5			Γ							

API Well No: 43013502330000 Received: 1/27/2010

	Proposed Hole, Casing, and Cement												
String	Hole Size	Casing Size	Top (MD)	Bottom (MD)									
Surf	12.25	8.625	0	300									
Pipe	Grade	Length	Weight										
	Grade J-55 ST&C	300	24.0			Г							

Project: USGS Myton SW (UT) Site: SECTION 24

Site: SECTION 24 Well: E-25-8-16 Wellbore: Wellbore #1 Design: Design #1

Azimuths to True North Magnetic North: 11.50°

Magnetic Field Strength: 52478.5snT Dip Angle: 65.88° Date: 12/11/2009 Model: IGRF200510

KOP @ 600' DOGLEG RATE 1-5 DEG/100 TARGET RADIUS IS 75'

NEWFIELD EXPLORATION

USGS Myton SW (UT) SECTION 24 E-25-8-16

Wellbore #1

Plan: Design #1

Standard Planning Report

11 December, 2009

NEWFIELD

HATHAWAYBURNHAM

Planning Report

Database: Company: EDM 2003.21 Single User Db NEWFIELD EXPLORATION

Project: USGS Myton SW (UT) **SECTION 24** Site: E-25-8-16

Well: Wellbore: Wellbore #1 Design #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well E-25-8-16

WELL @ 5461.0ft (NEWFIELD RIG) WELL @ 5461.0ft (NEWFIELD RIG)

True

Minimum Curvature

USGS Myton SW (UT), DUCHESNE COUNTY, UT, USA Project

Map System: Geo Datum:

Map Zone:

US State Plane 1983

Utah Central Zone

North American Datum 1983

System Datum:

Mean Sea Level

Using geodetic scale factor

Site SECTION 24, SEC 24 T8S, R16E

+N/-S

+E/-W

Site Position: From: Lat/Long Northing: Easting:

7,209,200.00 ft 2,041,800.00ft Latitude:

Longitude:

40° 6' 8.212 N

Position Uncertainty:

Slot Radius:

Grid Convergence:

110° 3' 53.957 W 0.92°

Well Position

Well

0.0 ft

E-25-8-16, SHL LAT: 40 05 52.36, LONG -110 04 29.84

Northing:

7,207,551.65 ft 2,039,037.78 ft

Latitude: Longitude:

40° 5' 52.360 N 110° 4' 29.840 W

Position Uncertainty

-2,788.4 ft 0.0 ft

-1,604.3 ft

Easting: Wellhead Elevation:

5,461.0 ft

Ground Level:

5,449.0 ft

Wellbore Wellbore #1 Field Strength **Model Name** Sample Date Declination Dip Angle **Magnetics** (nT) (°) (°) 52,478 11.50 65.88 IGRF200510 12/11/2009

Design #1 Design **Audit Notes:** 0.0 **PROTOTYPE** Tie On Depth: Version: Phase: +E/-W Direction Depth From (TVD) +N/-S **Vertical Section:** (ft) (°) (ft) (ft) 223.38 0.0 0.0 0.0

lan Section:	s									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
600.0	0.00	0.00	600.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,192.4	8.89	223.38	1,190.0	-33.3	-31.5	1.50	1.50	0.00	223.38	
6,658.0	8.89	223.38	6,590.0	-646.9	-611.4	0.00	0.00	0.00	0.00	E-25-8-16 TGT

HATHAWAYBURNHAM

Planning Report

Database: Company: Project: EDM 2003.21 Single User Db NEWFIELD EXPLORATION USGS Myton SW (UT)

 Site:
 SECTION 24

 Well:
 E-25-8-16

 Wellbore:
 Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well E-25-8-16

WELL @ 5461.0ft (NEWFIELD RIG) WELL @ 5461.0ft (NEWFIELD RIG)

True

Minimum Curvature

llbore: sign:	Design #1								
anned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.0	0.00	0.00	0.0	0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00	0.00 0.00
100.0 200.0	0.00 0.00	0.00 0.00	100.0 200.0	0.0 0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	1.50	223.38	700.0	-1.0	-0.9	1.3	1.50	1.50	0.00
800.0	3.00	223.38	799.9	-3.8	-3.6	5.2	1.50	1.50	0.00
900.0	4.50	223.38	899.7	-8.6	-8.1	11.8	1.50	1.50	0.00
1,000.0	6.00	223.38	999.3	-15.2	-14.4	20.9	1.50	1.50	0.00
1,100.0	7.50	223.38	1,098.6	-23.8	-22.4	32.7	1.50	1.50	0.00
1,192.4	8.89	223.38	1,190.0	-33.3	-31.5	45.8	1.50	1.50	0.00 0.00
1,200.0	8.89	223.38	1,197.5	-34.2	-32.3	47.0	0.00 0.00	0.00 0.00	0.00
1,300.0	8.89	223.38	1,296.3	-45.4	-42.9	62.5			
1,400.0	8.89	223.38	1,395.1	-56.6	-53.5	77.9	0.00	0.00	0.00
1,500.0	8.89	223.38	1,493.9	-67.9	-64.1	93.4	0.00	0.00	0.00 0.00
1,600.0	8.89	223.38	1,592.7	-79.1	-74.7	108.8 124.3	0.00 0.00	0.00 0.00	0.00
1,700.0	8.89	223.38	1,691.5	-90.3 -101.5	-85.3 - 96.0	139.7	0.00	0.00	0.00
1,800.0	8.89	223.38	1,790.3						
1,900.0	8.89	223.38	1,889.1	-112.8	-106.6	155.1	0.00 0.00	0.00 0.00	0.00 0.00
2,000.0	8.89	223.38	1,987.9	-124.0	-117.2	170.6 186.0	0.00	0.00	0.00
2,100.0	8.89	223.38 223.38	2,086.7 2,185.5	-135.2 -146.4	-127.8 -138.4	201.5	0.00	0.00	0.00
2,200.0 2,300.0	8.89 8.89	223.38	2,183.3	-157.7	-149.0	216.9	0.00	0.00	0.00
				-168.9	-159.6	232.4	0.00	0.00	0.00
2,400.0	8.89 8.89	223.38 223.38	2,383.1 2,481.9	-180.1	-170.2	247.8	0.00	0.00	0.00
2,500.0 2,600.0	8.89	223.38	2,580.7	-191.4	-180.8	263.3	0.00	0.00	0.00
2,700.0	8.89	223.38	2,679.5	-202.6	-191.4	278.7	0.00	0.00	0.00
2,800.0	8.89	223.38	2,778.3	-213.8	-202.0	294.2	0.00	0.00	0.00
2,900.0	8.89	223.38	2,877.1	-225.0	-212.7	309.6	0.00	0.00	0.00
3,000.0	8.89	223.38	2,975.9	-236.3	-223.3	325.1	0.00	0.00	0.00
3,100.0	8.89	223.38	3,074.7	-247.5	-233.9	340.5	0.00	0.00	0.00
3,200.0	8.89	223.38	3,173.5	-258.7	-244.5	356.0	0.00	0.00	0.00
3,300.0	8.89	223.38	3,272.3	-269.9	-255.1	371.4	0.00	0.00	0.00
3,400.0	8.89	223.38	3,371.1	-281.2	-265.7	386.9	0.00	0.00	0.00
3,500.0	8.89	223.38	3,469.9	-292.4	-276.3	402.3	0.00	0.00	0.00
3,600.0	8.89	223,38	3,568.7	-303.6	-286.9	417.7	0.00	0.00	0.00
3,700.0	8.89	223.38	3,667.5	-314.9	-297.5	433.2	0.00	0.00 0.00	0.00 0.00
3,800.0	8.89	223.38	3,766.3	-326.1	-308.1	448.6	0.00		
3,900.0	8.89	223.38	3,865.1	-337.3	-318.8	464.1	0.00	0.00	0.00
4,000.0	8.89	223.38	3,963.9	-348.5	-329.4	479.5	0.00	0.00	0.00 0.00
4,100.0	8.89	223.38	4,062.7	-359.8	-340.0 -350.6	495.0 510.4	0.00 0.00	0.00 0.00	0.00
4,200.0	8.89	223.38	4,161.5	-371.0	-361.2	525.9	0.00	0.00	0.00
4,300.0	8.89	223.38	4,260.3	-382.2					
4,400.0	8.89	223.38	4,359.1	-393.4	-371.8	541.3	0.00	0.00 0.00	0.00 0.00
4,500.0	8.89	223.38	4,457.9	-404.7	-382.4 -393.0	556.8 572.2	0.00 0.00	0.00	0.00
4,600.0	8.89	223.38 223.38	4,556.7 4,655.5	-415.9 -427.1	-393.0 -403.6	572.2 587.7	0.00	0.00	0.00
4,700.0 4,800.0	8.89 8.89	223.38	4,000.0	-427.1 -438.3	-414.2	603.1	0.00	0.00	0.00
								0.00	0.00
4,900.0	8.89	223.38	4,853.1	-449.6	-424.9 -435.5	618.6 634.0	0.00 0.00	0.00	0.00
5,000.0	8.89 8.89	223.38 223.38	4,951.9 5,050.7	-460.8 -472.0	-435.5 -446.1	649.5	0.00	0.00	0.00
5,100.0 5,200.0	8.89	223.38	5,050.7 5,149.5	-483.3	-456.7	664.9	0.00	0.00	0.00

6,400.0

6,500.0

6,600.0

6,658.0

HATHAWAYBURNHAM

Planning Report

Database: Company: Project:

Wellbore:

Design:

EDM 2003.21 Single User Db NEWFIELD EXPLORATION USGS Myton SW (UT)

223.38

223.38

223.38

223.38

8.89

8.89

8.89

8.89

6,335.1

6,433.9

6,532.7

6,590.0

Site: Well:

SECTION 24 E-25-8-16 Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

-584.0

-594.6

-605.2

-611.4

Well E-25-8-16

WELL @ 5461.0ft (NEWFIELD RIG) WELL @ 5461.0ft (NEWFIELD RIG)

True

850.3

865.7

881.2

890.1

Minimum Curvature

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

ned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
5,300.0	8.89	223.38	5,248.3	-494.5	-467.3	680.3	0.00	0.00	0.00
5,400.0	8.89	223.38	5.347.1	-505.7	-477.9	695.8	0.00	0.00	0.00
5,500.0	8.89	223.38	5,445.9	-516.9	-488.5	711.2	0.00	0.00	0.00
5,600.0	8.89	223.38	5,544.7	-528.2	-499.1	726.7	0.00	0.00	0.00
5,700.0	8.89	223.38	5,643.5	-539.4	-509.7	742.1	0.00	0.00	0.00
5,800.0	8.89	223.38	5,742.3	-550.6	-520.3	757.6	0.00	0.00	0.00
5,900.0	8.89	223.38	5.841.1	-561.8	-530.9	773.0	0.00	0.00	0.00
6,000.0	8.89	223.38	5,939.9	-573.1	-541.6	788.5	0.00	0.00	0.00
6,100.0	8.89	223.38	6,038.7	-584.3	-552.2	803.9	0.00	0.00	0.00
6,200.0	8.89	223.38	6.137.5	-595.5	-562.8	819.4	0.00	0.00	0.00
6,300.0	8.89	223.38	6,236.3	-606.8	-573.4	834.8	0.00	0.00	0.00

-618.0

-629.2

-640.4

-646.9

Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (ft)	Easting (ft)	Latitude	Longitude
E-25-8-16 TGT - plan hits target - Circle (radius 75	0.00	0.00	6,590.0	-646.9	-611.4	7,206,895.11	2,038,436.85	40° 5' 45.966 N	110° 4' 37.707 V

12/11/2009 10:41:58AM Page 4 COMPASS 2003.21 Build 25

NEWFIELD PRODUCTION COMPANY GREATER MONUMENT BUTTE E-25-8-16 AT SURFACE: SW/SW SECTION 24, T8S, R16E DUCHESNE COUNTY, UTAH

TEN POINT DRILLING PROGRAM

1. **GEOLOGIC SURFACE FORMATION:**

Uinta formation of Upper Eocene Age

2. ESTIMATED TOPS OF IMPORTANT GEOLOGIC MARKERS:

Uinta 0 – 1840' Green River 1840' Wasatch 6658'

3. ESTIMATED DEPTHS OF ANTICIPATED WATER, OIL, GAS OR MINERALS:

Green River Formation 1840' – 6658' – Oil

Fresh water may be encountered in the Uinta Formation, but would not be expected below about 350'. All water shows and water bearing geologic units shall be reported to the geologic and engineering staff of the Vernal Office prior to running the next string of casing or before plugging orders are requested. All water shows must be reported within one (1) business day after being encountered.

All usable (<10,000 PPM TDS) water and prospectively valuable minerals (as described by BLM at onsite) encountered during drilling will be recorded by depth and adequately protected. This information shall be reported to the Vernal Office.

Detected water flows shall be sampled, analyzed, and reported to the geologic & engineering staff of the Vernal Office. The office may request additional water samples for further analysis. Usage of the State of Utah form *Report of Water Encountered* is acceptable, but not required.

The following information is requested for water shows and samples where applicable:

Location & Sampled Interval Date Sampled Flow Rate Temperature

Hardness pH

Water Classification (State of Utah)

Dissolved Iron (Fe) (ug/l)

Dissolved Magnesium (Mg) (mg/l)

Dissolved Bicarbonate (NaHCO₃) (mg/l)

Dissolved Sulfate (SO₄) (mg/l)

Dissolved Total Solids (TDS) (mg/l)

Ten Point Well Program & Thirteen Point Well Program Page 2 of 4

4. PROPOSED CASING PROGRAM

a. Casing Design: Greater Monument Butte E-25-8-16

	in the latest	Interval		Grade	Coupling	S RW	Design Facto	ors
Size	Тор	Bottom	Weight	Grade	Coupling	Burst	Collapse	Tension
Surface casing		2001	24.0	1.55	СТО	2,950	1,370	244,000
8-5/8"	0"	300'	24.0	J-55	STC	17.53	14.35	33.89
Prod casing		0.0501	45.5		1.70	4,810	4,040	217,000
5-1/2"	0"	6,658'	15.5	J-55	LTC	2.27	1.91	2.10

Assumptions:

- 1) Surface casing max anticipated surface press (MASP) = Frac gradient gas gradient
- 2) Prod casing MASP (production mode) = Pore pressure gas gradient
- 3) All collapse calculations assume fully evacuated casing w/ gas gradient
- 4) All tension calculations assume air weight

Frac gradient at surface casing shoe = 13.0 ppg
Pore pressure at surface casing shoe = 8.33 ppg
Pore pressure at prod casing shoe = 8.33 ppg
Gas gradient = 0.115 psi/ft

All casing shall be new or, if used, inspected and tested. Used casing shall meet or exceed API standards for new casing.

All casing strings shall have a minimum of 1 (one) centralizer on each of the bottom three (3) joints.

b. Cementing Design: Greater Monument Butte E-25-8-16

Job	Fill	Description	Sacks ft ³	OH Excess*	Weight (ppg)	Yield (ft³/sk)
Surface enging	300'	Class G w/ 2% CaCl	138	30%	15.8	1.17
Surface casing	300	Class G W/ 270 CaCl	161	3070	10.0	
Prod casing	4,658'	Prem Lite II w/ 10% gel + 3%	322	30%	11.0	3.26
Lead	4,000	KCI	1049	3070	11.0	5.20
Prod casing	2,000'	50/50 Poz w/ 2% gel + 3%	363	30%	14.3	1.24
Tail	2,000	KCI	451	3070	1-7.5	24

- *Actual volume pumped will be 15% over the caliper log
- Compressive strength of lead cement: 1800 psi @ 24 hours, 2250 psi @ 72 hours
- Compressive strength of tail cement: 2500 psi @ 24 hours

Hole Sizes: A 12-1/4" hole will be drilled for the 8-5/8" surface casing. A 7-7/8" hole will be drilled for the 5-1/2" production casing.

The 8-5/8" surface casing shall in all cases be cemented back to surface. In the event that during the primary surface cementing operation the cement does not circulate to surface, or if the cement level should fall back more than 8 feet from surface, then a remedial surface cementing operation shall be performed to insure adequate isolation and stabilization of the surface casing.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

The operator's minimum specifications for pressure control equipment are as follows:

Ten Point Well Program & Thirteen Point Well Program Page 3 of 4

An 8" Double Ram Hydraulic unit with a closing unit will be utilized. Function test of BOP's will be check daily.

Refer to Exhibit C for a diagram of BOP equipment that will be used on this well.

6. TYPE AND CHARACTERISTICS OF THE PROPOSED CIRCULATION MUDS:

From surface to ±350 feet will be drilled with an air/mist system. The air rig is equipped with a 6 ½" blooie line that is straight run and securely anchored. The blooie line is used with a discharge less than 100 ft from the wellbore in order to minimize the well pad size. The blooie line is not equipped with an automatic igniter or continuous pilot light and the compressor is located less than 100 ft from the well bore due to the low possibility of combustion with the air dust mixture. The trailer mounted compressor (capacity of 2000 CFM) has a safety shut-off valve which is located 15 feet from the air rig. A truck with 70 bbls of water is on stand by to be used as kill fluid, if necessary. From about ±350 feet to TD, a fresh water system will be utilized. Clay inhibition and hole stability will be achieved with a KCl substitute additive. This additive will be identified in the APD and reviewed to determine if the reserve pit shall be lined. This fresh water system will typically contain Total Dissolved Solids (TDS) of less than 3000 PPM. Anticipated mud weight is 8.4 lbs/gal. If necessary to control formation fluids or pressure, the system will be weighted with the addition of bentonite gel, and if pressure conditions warrant, with barite

No chromate additives will be used in the mud system on Federal and/or Indian lands without prior BLM approval to ensure adequate protection of fresh aquifers.

No chemicals subject to reporting under SARA Title III in an amount equal to or greater than 10,000 pounds will be used, produced, stored, transported, or disposed of annually in association with the drilling, testing, or completing of this well. Furthermore, no extremely hazardous substances, as defined in 40 CFR 355, in threshold planning quantities, will be used, produced, stored, transported, or disposed of in association with the drilling, testing, or completing of this well.

Hazardous substances specifically listed by the EPA as a hazardous waste or demonstrating a characteristic of a hazardous waste will not be used in drilling, testing, or completion operations.

Newfield Production will visually monitor pit levels and flow from the well during drilling operations.

7. AUXILIARY SAFETY EQUIPMENT TO BE USED:

Auxiliary safety equipment will be a Kelly Cock, bit float, and a TIW valve with drill pipe threads.

8. TESTING, LOGGING AND CORING PROGRAMS:

The logging program will consist of a Dual Induction, Gamma Ray and Caliper log from TD to base of surface casing @ 300' +/-, and a Compensated Neutron-Formation Density Log from TD to 3500' +-. A cement bond log will be run from PBTD to cement top. No drill stem testing or coring is planned for this well.

9. ANTICIPATED ABNORMAL PRESSURE OR TEMPERATURE:

No abnormal temperatures or pressures are anticipated. No hydrogen sulfide has been encountered or is known to exist from previous drilling in the area at this depth. Maximum anticipated

'APIWellNo:43013502330000'

Ten Point Well Program & Thirteen Point Well Program Page 4 of 4

bottomhole pressure will approximately equal total depth in feet multiplied by a 0.433 psi/foot gradient.

10. ANTICIPATED STARTING DATE AND DURATION OF THE OPERATIONS:

It is anticipated that the drilling operations will commence the third quarter of 2010, and take approximately seven (7) days from spud to rig release.

2-M SYSTEM

Blowout Prevention Equipment Systems

EXHIBIT C

-13-	-	25	1 4	ar		_	_	T	_	T					_	T	_	T	_	_		<u></u>
4	2	2	540	4	s	*	3.	2	58	0	3.	34	2	2.	300	6	8	4.	3	2	а	Newfield Wells : Location
:9	10	11	12	7			10	(11)	12	,			10		/12	,		5	16	ા	12	Surface Spud Drilling Walting on Completion Producing Oil Well
16	15	18-R3V	13	is	ır	10	S-R2V	14	13	10	17	16	15	14	15	113	0.75	16	15	144	13	Producing Gas Well Water Injection Well
21	22	23		19	20	21	22	22	24 A		20 20 20 20 20 20 20 20 20 20 20 20 20 2	21 10 10 10	1 32 22 3, 32	n sh	24	19	20	21	12	23	26	Plugged & Abandoned Shut In Water Source Well Water Disposal Well
24	27	26	25	30	20 day 30	29	22 22	G1283 65 8	. S. S. C. S.	15 50 21 September 1	17 10 20 45 44 45	94.74	yer Zu chen		20 3 5 m	als " Ja	20	28	22	26	216	Injection Stations UnitOutlines
33	34	35	25	19 15	29	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 + 5:		U	10 C in	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						Se são Se FO	S-R19	31	Su + The	35	31 32 X
a	,		% di	188-	3 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		444				22/2		447				Late Soil		34	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		* T5S 0
0	10	**	4 4 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6	22		7.7.7 7.7.7	. a a a a a a a a a a a a a a a a a a a			12	Ca Un Is Is a	4.7.7.	4.44		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4 6 8 6	12/	8 3 5	8 A B A B B		31 32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
:16	15 3. 3.	75		300	1 2 2	2 4 4	20	7.42		242			egylande egylan	1 4 4 4	2.42	2 3 3 6.		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Lo Co		12 sie	, A
21				est be set	An Constitution of the con	24 25 25 25 25 25 25 25 25 25 25 25 25 25			THE STATE OF THE S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	1. 1. 1. 1. 13		31	16 115 all	ts	14 13	A.	53 Jis. 16
20 000	1 40 / 30	122	Cambridge 15	NG 1218212	20 manuals	St . S. 107	HATTER BOT					温 極 新色	Sir se si ser siren ser si	1 100		in internal de	3.	2)	22	3h 23	24	19 20 21
27	31 x31 Si din 331 Si din 332 din 33	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IS-R1	3E TS	S-R16	50 25 50 50 27	26 ***	as Single Si	36	हैं औ। 29	5. A. d.	15S-IR	26	25	ž.	表	144 S	27	36	25	25 25
4	సించిం <i>చిన్న</i> 34	35	38	51	32	33	34	25	26	31	32	23	34	35	36	31	32	33	34	35	36	32 33
ं	S=R30	70 .		á	5	4	,	ī	Ť		5	4	3	2	1	4	5	Ã	3	2	ı	NEWFIELD +
-	T :	X2-RY	E ,,	,		7705	R 10E	11	12	2.		7 (22)	10	11	12	7		TILES!	CIBE	11	112	Exhibit A Ductions & Unital Complex
	15	-14	10		17	19	- 15	14	- 13	16	12	16	15	14	13	14	. 17	16	15	14	13	Thy Street State 2000 Charles #80,001 Elitor #80,000 (1900)

NEWFIELD PRODUCTION COMPANY GREATER MONUMENT BUTTE E-25-8-16 AT SURFACE: SW/SW SECTION 24, T8S, R16E DUCHESNE COUNTY, UTAH

ONSHORE ORDER NO. 1

MULTI-POINT SURFACE USE & OPERATIONS PLAN

1. EXISTING ROADS

See attached Topographic Map "A"

To reach Newfield Production Company well location site Greater Monument Butte E-25-8-16 located in the SW 1/4 SW 1/4 Section 24, T8S, R16E, Duchesne County, Utah:

Proceed southwesterly out of Myton, Utah along Highway 40 - 1.4 miles \pm to the junction of this highway and UT State Hwy 53; proceed southeasterly -6.2 miles \pm to it's junction with an existing dirt road to the southwest; proceed southwesterly -1.3 miles \pm to it's junction with an existing road to the east; proceed easterly -0.4 miles \pm to it's junction with the access road to the existing 13-24-8-16 well location.

The aforementioned dirt oil field service roads and other roads in the vicinity are constructed out of existing native materials that are prevalent to the existing area they are located in and range from clays to a sandy-clay shale material.

The roads for access during the drilling, completion and production phase will be maintained at the standards required by the State of Utah, or other controlling agencies. This maintenance will consist of some minor grader work for smoothing road surfaces and for snow removal. Any necessary fill material for repair will be purchase and hauled from private sources.

2. PLANNED ACCESS ROAD

There is no proposed access road for this location. The proposed well will be drilled off of the existing 13-24-8-16 well pad. See attached **Topographic Map "B"**.

There will be **no** culverts required along this access road. There will be barrow ditches and turnouts as needed along this road.

There are no fences encountered along this proposed road. There will be no new gates or cattle guards required.

All construction material for this access road will be borrowed material accumulated during construction of the access road.

3. LOCATION OF EXISTING WELLS

Refer to Exhibit "B".

4. <u>LOCATION OF EXISTING AND/OR PROPOSED FACILITIES</u>

There are no existing facilities that will be used by this well.

It is anticipated that this well will be a producing oil well.

There are no existing facilities that will be used by this well.

Upon construction of a tank battery, the well pad will be surrounded by a dike of sufficient capacity to contain at minimum 110% of the largest tank volume within the facility battery.

Tank batteries will be built to State specifications.

All permanent (on site for six (6) months or longer) structures, constructed or installed (including pumping units), will be painted a flat, non-reflective, earth tone color to match one of the standard environmental colors, as determined by the Rocky Mountain Five State Interagency Committee. All facilities will be painted within six months of installation.

5. <u>LOCATION AND TYPE OF WATER SUPPLY</u>

Newfield Production will transport water by truck from nearest water source as determined by a Newfield representative for the purpose of drilling the above mentioned well. The available water sources are as follows:

Johnson Water District Water Right: 43-7478

Neil Moon Pond

Water Right: 43-11787

Maurice Harvey Pond Water Right: 47-1358

Newfield Collector Well

Water Right: 41-3530 (A30414DV, contracted with the Duchesne County Conservancy District).

Please refer to the Monument Butte Field SOP. See Exhibit "A".

6. SOURCE OF CONSTRUCTION MATERIALS

All construction material for this location shall be borrowed material accumulated during construction of the location site and access road.

A mineral material application is not required for this location.

7. METHODS FOR HANDLING WASTE DISPOSAL

A small reserve pit (90' x 40' x 8' deep, or less) will be constructed from native soil and clay materials. The reserve pit will receive the processed drill cutting (wet sand, shale & rock) removed from the wellbore. Any drilling fluids, which do accumulate in the pit as a result of shale-shaker carryover, cleaning of the sand trap, etc., will be promptly reclaimed. All drilling fluids will be fresh water based, typically containing Total Dissolved Solids of less than 3000 PPM. No potassium chloride, chromates, trash, debris, nor any other substance deemed hazardous will be placed in this pit. Therefore, it is proposed that no synthetic liner be required in the reserve pit. However, if upon constructing the pit there is insufficient fine clay and silt present, a liner will be used for the purpose of reducing water loss through percolation.

Newfield requests approval that a flare pit not be constructed or utilized on this location.

A portable toilet will be provided for human waste.

A trash basket will be provided for garbage (trash) and hauled away to an approved disposal site at the completion of the drilling activities.

Immediately upon first production, all produced water will be confined to a steel storage tank. If the production water meets quality guidelines, it is transported to the Ashley, Monument Butte, Jonah, and Beluga water injection facilities by company or contract trucks. Subsequently, the produced water is injected into approved Class II wells to enhance Newfield's secondary recovery project.

Water not meeting quality criteria, is disposed at Newfield's Pariette #4 disposal well (Sec. 7, T9S R19E), State of Utah approved surface disposal facilities, or Federally approved surface disposal facilities.

8. ANCILLARY FACILITIES

There are no ancillary facilities planned for at the present time and none foreseen in the near future.

9. WELL SITE LAYOUT

See attached Location Layout Sheet.

Fencing Requirements

All pits will be fenced according to the following minimum standards:

- a) A 39-inch net wire shall be used with at least one strand of barbed wire on top of the net.
- b) The net wire shall be no more than two (2) inches above the ground. The barbed wire shall be three (3) inches above the net wire. Total height of the fence shall be at least forty-two (42) inches.
- c) Corner posts shall be centered and/or braced in such a manner to keep tight at all times
- d) Standard steel, wood or pipe posts shall be used between the corner braces. Maximum distance between any two posts shall be no greater than sixteen (16) feet.
- e) All wire shall be stretched, by using a stretching device, before it is attached to the corner posts.

The reserve pit fencing will be on three (3) sides during drilling operations and on the fourth side when the rig moves off location. Pits will be fenced and maintained until cleanup.

Existing fences to be crossed by the access road will be braced and tied off before cutting so as to prevent slacking in the wire. The opening shall be closed temporarily as necessary during construction to prevent the escape of livestock, and upon completion of construction the fence shall be repaired to BLM specifications.

10. PLANS FOR RESTORATION OF SURFACE:

a) Producing Location

Immediately upon well completion, the location and surrounding area will be cleared of all unused tubing, equipment, debris, material, trash and junk not required for production.

The reserve pit and that portion of the location not needed for production facilities/operations will be recontoured to the approximated natural contours. Weather permitting, the reserve pit will be reclaimed within one hundred twenty (120) days from the date of well completion. Before any dirt work takes place, the reserve pit must have all fluids and hydrocarbons removed.

b) Dry Hole Abandoned Location

At such time as the well is plugged and abandoned, the operator shall submit a subsequent report of abandonment and the State of Utah will attach the appropriate surface rehabilitation conditions of approval.

11. <u>SURFACE OWNERSHIP</u> – Bureau of Land Management.

12. OTHER ADDITIONAL INFORMATION

Newfield Production Company is responsible for informing all persons in the area who are associated with this project that they will be subject to prosecution for knowingly disturbing historic or archaeological sites, or for collecting artifacts. If historic or archaeological materials are uncovered during construction, Newfield is to immediately stop work that might further disturb such materials and contact the Authorized Officer.

- a) Newfield Production will control noxious weeds along rights-of-way for roads, pipelines, well sites or other applicable facilities. On State administered land it is required that a Pesticide Use Proposal shall be submitted and given approval prior to the application of herbicides or other possible hazardous chemicals.
- b) Drilling rigs and/or equipment used during drilling operations on this well site will not be stacked or stored on State Lands after the conclusion of drilling operations or at any other time without State authorization. However, if State authorization is obtained, it is only a temporary measure to allow time to make arrangements for permanent storage on commercial facilities.

The Archaeological Resource Survey and Paleontological Resource Survey for this area are attached. MOAC Report #09-165, 10/21/09. Paleontological Resource Survey prepared by, Wade E. Miller, 10/1/09. See attached report cover pages, Exhibit "D".

Additional Surface Stipulations

All lease and/or unit operations will be conducted in such a manner that full compliance is made with all applicable laws and regulations, Onshore Oil and Gas Orders, the approved plan of operations and any applicable Notice to Lessees. A copy of these conditions will be furnished to the field representative to ensure compliance.

Hazardous Material Declaration

Newfield Production Company guarantees that during the drilling and completion of the Greater Monument Butte E-25-8-16, Newfield will not use, produce, store, transport or dispose 10,000# annually of any of the hazardous chemicals contained in the Environmental Protection Agency's consolidated list of chemicals subject to reporting under Title III Superfund Amendments and Reauthorization Act (SARA) of 1986. Newfield also guarantees that during the drilling and completion of the Greater Monument Butte E-25-8-16, Newfield will use, produce, store, transport or dispose less than the threshold planning quantity (T.P.Q.) of any extremely hazardous substances as defined in 40 CFR 355.

A complete copy of the approved APD, if applicable, shall be on location during the construction of the location and drilling activities.

Newfield Production Company or a contractor employed by Newfield Production shall contact the State office at (801) 722-3417, 48 hours prior to construction activities.

The State office shall be notified upon site completion prior to moving on the drilling rig.

13. LESSEE'S OR OPERATOR'S REPRENSENTATIVE AND CERTIFICATION:

Representative

'APIWellNo:43013502330000'

Name:

Tim Eaton

Address:

Newfield Production Company

Route 3, Box 3630 Myton, UT 84052

Telephone:

(435) 646-3721

Certification

Please be advised that Newfield Production Company is considered to be the operator of well #E-25-8-16, Duchesne County, Utah and is responsible under the terms and conditions of the lease for the operations conducted upon the leased lands. Bond coverage is provided by, Federal Bond #WYB000493.

I hereby certify that the proposed drill site and access route have been inspected, and I am familiar with the conditions which currently exist; that the statements made in this plan are true and correct to the best of my knowledge; and that the work associated with the operations proposed here will be performed by Newfield Production Company and its contractors and subcontractors in conformity with this plan and the terms and conditions under which it is approved. This statement is subject to the provisions of the 18 U.S.C. 1001 for the filing of a false statement.

<u>1/26/10</u> Date Mandie Crozier Regulatory Specialist

Newfield Production Company

Newfield Production Company Proposed Site Facility Diagram

Greater Monument Butte E-25-8-16

From the 13-24-8-16 Location

SW/SW Sec. 24 T8S, R16E

Duchesne County, Utah

UTU-67170

E-25-8-16

Exhibit "D"

10F2

CULTURAL RESOURCE INVENTORY OF
NEWFIELD EXPLORATION'S PROPOSED WELL LOCATIONS
MB NE D-25-8-16, MB NE E-25-8-16, MB NE P-24-8-16
AND WELLS DRAW Q-34-8-16
(TOWNSHIP 8S, RANGE 16E, SEC. 24 AND 34)
DUCHESNE COUNTY, UTAH

By:

Patricia Stavish

Prepared For:

Bureau of Land Management Vernal Field Office

Prepared Under Contract With:

Newfield Exploration Company Rt. 3 Box 3630 Myton, Utah 84052

Prepared By:

Montgomery Archaeological Consultants, Inc. P.O. Box 219 Moab, Utah 84532

MOAC Report No. 09-165

October 21, 2009

United States Department of Interior (FLPMA)
Permit No. 09-UT-60122

State of Utah Antiquities Project (Survey)
Permit No. U-09-MQ-0637b

Ex25-8-16

2052

NEWFIELD EXPLORATION COMPANY

PALEONTOLOGICAL SURVEY OF PROPOSED PRODUCTION DEVELOPMENT AREAS, AND PROPOSED PIPELINE ROUTES DUCHESNE & UINTAH COUNTIES, UTAH

Site Surveys of Proposed Wells

NE 1/4, NE 1/4, Sec. 25, (1-25-8-16), SE 1/4, NE 1/4, Sec. 24, (D-25-8-16), SW 1/4, SW 1/4, Sec. 24, (E-25-8-16 & P-24-8-16), SE 1/4, SW 1/4, Sec. 34, (Q-34-8-16), NW 1/4, SE 1/4, Sec. 34, (L-34-8-16 & S-34-8-16), NW 1/4, SW 1/4, Sec. 35, (T-34-8-16), NE 1/4, SW 1/4, Sec. 35, (R-35-8-16), SE 1/4, SE 1/4 Sec. 26, (S-26-8-16), NW 1/4, SW 1/4, Sec. 26, (N-26-8-16), SE 1/4, NE 1/4, Sec. 26, (O-25-8-16), SE 1/4, NE 1/4, Sec. 25, (J-25-8-16), NE 1/4, SE 1/4, Sec. 27 (S-27-8-16), SE 1/4, SW 1/4, Sec. 36, (C-1-9-16), SW 1/4, SE 1/4, Sec. 36, (B-1-9-16 & R-36-8-16), SE 1/4, SE 1/4, Sec. 36, (T-36-8-16, A-1-9-16 & K-36-8-16), SW 1/4, NW 1/4, Sec. 26, (O-26-8-16), SW 1/4, NE 1/4, Sec. 34, (H-34-8-16 & M-34-8-16), SW 1/4, NE 1/4, Sec. 27, (B-34-8-16 & C-34-8-16), T 8 S, R 16 E; NE 1/4, SW 1/4, Sec.1, (M-1-9-16), NW 1/4, SE 1/4, Sec. 11, (S-11-9-16), T 9 S, R 16 E.

Proposed Pipeline Surveys

SW 1/4, SW 1/4, Sec. 8, T 9 S, R 17 E (14-8-9-17); NW 1/4, SW 1/4, Sec. 7 to SW 1/4, NW 1/4, Sec. 20, T 9 S, R 16 E (12-7-9-16 to 5-20-9-16); SE 1/4, NE 1/4 (8-31-8-18); NW 1/4, SE 1/4 (10-31-8-18); NW 1/4, SE 1/4, to SW 1/4, NE 1/4 (32-29-8-18);

REPORT OF SURVEY

Prepared for:

Newfield Exploration Company

Prepared by:

Wade E. Miller Consulting Paleontologist October 1, 2009

United States Department of the Interior

BUREAU OF LAND MANAGEMENT

Utah State Office
P.O. Box 45155
Salt Lake City, Utah 84145-0155

IN REPLY REFER TO: 3160 (UT-922)

February 1, 2010

Memorandum

To: Assistant District Manager Minerals, Vernal District

From: Michael Coulthard, Petroleum Engineer

Subject: 2010 Plan of Development Greater Monument

Butte Unit, Duchesne and Uintah Counties,

Utah.

Pursuant to email between Diana Whitney, Division of Oil, Gas and Mining, and Mickey Coulthard, Utah State Office, Bureau of Land Management, the following wells are planned for calendar year 2010 within the Greater Monument Butte Unit, Duchesne and Uintah Counties, Utah.

API#	WEL	L NAME	L	OCA	TION			
(Proposed PZ	GREEI	N RIVER)						
43-013-50224	GMBU				T09S T09S			
43-013-50225	GMBU	н-34-8-16			T08S T08S			
43-013-50226	GMBU				T08S T08S			
43-013-50231	GMBU	T-24-8-16			T08S T08S			
43-013-50232	GMBU	P-24-8-16			T08S T08S			
43-013-50233	GMBU	E-25-8-16			T08S T08S			
43-013-50234	GMBU	D-25-8-16			T08S		 	
43-013-50235	GMBU	J-25-8-16			T08S			

API#	WEL	L NAME	L	OCAT	ΓΙΟΝ			
(Proposed PZ	GREEN	N RIVER)						
43-013-50236	GMBU	0-25-8-16				R16E R16E		
43-013-50237	GMBU	0-26-8-16				R16E R16E		
43-013-50238	GMBU	S-26-8-16				R16E R16E		
43-013-50239	GMBU	S-27-8-16				R16E R16E		
43-013-50240	GMBU	S-34-8-16				R16E R16E		
43-013-50241	GMBU	T-25-8-16				R17E R16E		

This office has no objection to permitting the wells at this time.

/s/ Michael L. Coulthard

bcc: File - Greater Monument Butte Unit
 Division of Oil Gas and Mining
 Central Files
 Agr. Sec. Chron
 Fluid Chron

MCoulthard:mc:2-1-10

January 27, 2010

State of Utah, Division of Oil, Gas and Mining ATTN: Diana Mason P.O. Box 145801 Salt Lake City, UT 84114-5801

RE: Directional Drilling

Greater Monument Butte E-25-8-16
Greater Monument Butte (Green River) Unit

Surface Hole: T8S-R16E Section 24: SWSW (UTU-67170)

629' FSL 631' FWL

At Target: T8S-R16E Section 25: NWNW (UTU-34346)

10' FNL 10' FWL

Duchesne County, Utah

Dear Ms. Mason;

Pursuant to the filing by Newfield Production Company (NPC) of an Application for Permit to Drill the above referenced well dated 1/26/10, a copy of which is attached, and in accordance with Oil and Gas Conservation Rule R649-3-11, NPC hereby submits this letter as notice of our intention to directionally drill this well.

The surface hole and target locations of this well are both within the boundaries of the Greater Monument Butte Unit (UTU-87538X), of which Newfield certifies that it is the operator. Further, Newfield Certifies that all lands within 460 feet of the entire directional well bore are within the Greater Monument Butte Unit.

NPC is permitting this well as a directional well in order to mitigate surface disturbance by utilizing preexiting roads and pipelines.

NPC hereby requests our application for permit to drill be granted pursuant to R649-3-11. If you have any questions or require further information, please contact the undersigned at 303-383-4197 or by email at sgillespie@newfield.com. Your consideration in this matter is greatly appreciated.

Sincerely, Newfield Production Company

Shane Gillespie Land Associate

RECEIVED
FEB 0 1 2010

DIV. OF OIL, GAS & MINING

WORKSHEET APPLICATION FOR PERMIT TO DRILL

APD RECEIVED:	1/27/2010		API NO. ASSIGNED:	43013502330000
WELL NAME:	Greater Monument Butte E-25-8-16			
OPERATOR:	NEWFIELD PRODUCTION COMPANY (N2695)		PHONE NUMBER:	435 646-4825
CONTACT:	Mandie Crozier			
PROPOSED LOCATION:	SWSW 24 080S 160	0E	Permit Tech Review:	
SURFACE:	0629 FSL 0631 FWI	L	Engineering Review:	
воттом:	0010 FNL 0010 FWI	L	Geology Review:	
COUNTY:	DUCHESNE			
LATITUDE:	40.09784		LONGITUDE:	-110.07415
UTM SURF EASTINGS:	578920.00		NORTHINGS:	4438817.00
FIELD NAME:	MONUMENT BUTTE			
LEASE TYPE:	1 - Federal			
LEASE NUMBER:	UTU-67170	PROPOSED PRODUCING FOR	RMATION(S): GREEN RIV	ĒR
SURFACE OWNER:	1 - Federal		COALBED METHANE:	NO
RECEIVED AND/OR REVIEW	VED:	LOCATION AND SIT	ING:	
₽ PLAT		R649-2-3.		
▶ Bond: FEDERAL - WYB00	00493	Unit: GMBU (GRF	(V)	
Potash		R649-3-2. Gen	eral	
Oil Shale 190-5				
Oil Shale 190-3		R649-3-3. Exc	eption	
Oil Shale 190-13		Drilling Unit		
✓ Water Permit: 43-7478		Board Cause	No: Cause 213-11	
RDCC Review:		Effective Date	e: 11/30/2009	
Fee Surface Agreemen	it	Siting: Suspe	ends General Siting	
Intent to Commingle		⊮ R649-3-11. Dii	rectional Drill	
Commingling Approved				
Comments: Presite Con	mpleted			
Stipulations: 4 - Federa	al Approval - dmasor	1		

4 - Federal Approval - dmason 15 - Directional - dmason 27 - Other - bhill

API Well No: 43013502330000

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER
Executive Director

Division of Oil, Gas and Mining

JOHN R. BAZA
Division Director

Permit To Drill

Well Name: Greater Monument Butte E-25-8-16

API Well Number: 43013502330000 Lease Number: UTU-67170 Surface Owner: FEDERAL Approval Date: 2/3/2010

Issued to:

NEWFIELD PRODUCTION COMPANY, Rt 3 Box 3630, Myton, UT 84052

Authority:

Pursuant to Utah Code Ann. §40-6-1 et seq., and Utah Administrative Code R649-3-1 et seq., the Utah Division of Oil, Gas and Mining issues conditions of approval, and permit to drill the listed well. This permit is issued in accordance with the requirements of Cause 213-11. The expected producing formation or pool is the GREEN RIVER Formation(s), completion into any other zones will require filing a Sundry Notice (Form 9). Completion and commingling of more than one pool will require approval in accordance with R649-3-22.

Duration:

This approval shall expire one year from the above date unless substantial and continuous operation is underway, or a request for extension is made prior to the expiration date

General:

Compliance with the requirements of Utah Admin. R. 649-1 et seq., the Oil and Gas Conservation General Rules, and the applicable terms and provisions of the approved Application for permit to drill.

Conditions of Approval:

State approval of this well does not supercede the required federal approval, which must be obtained prior to drilling.

In accordance with Utah Admin. R.649-3-11, Directional Drilling, the operator shall submit a complete angular deviation and directional survey report to the Division within 30 days following completion of the well.

Production casing cement shall be brought up to or above the top of the unitized interval for the Greater Monument Butte Unit (Cause No. 213-11).

Notification Requirements:

The operator is required to notify the Division of Oil, Gas and Mining of the following actions during drilling of this well:

• Within 24 hours following the spudding of the well – contact Carol Daniels at 801-538-5284 (please leave a voicemail message if not available)

OR

submit an electronic sundry notice (pre-registration required) via the Utah Oil & Gas website at https://oilgas.ogm.utah.gov

API Well No: 43013502330000

Reporting Requirements:

All reports, forms and submittals as required by the Utah Oil and Gas Conservation General Rules will be promptly filed with the Division of Oil, Gas and Mining, including but not limited to:

- Entity Action Form (Form 6) due within 5 days of spudding the well
- Monthly Status Report (Form 9) due by 5th day of the following calendar month
- Requests to Change Plans (Form 9) due prior to implementation
- Written Notice of Emergency Changes (Form 9) due within 5 days
- Notice of Operations Suspension or Resumption (Form 9) due prior to implementation
- Report of Water Encountered (Form 7) due within 30 days after completion
- Well Completion Report (Form 8) due within 30 days after completion or plugging

Approved By:

Gil Hunt

Associate Director, Oil & Gas

Die Hunt

Form 3160-3 (August 2007)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM	APPRO	OVED
OMB 1	No. 1004	-0137
Expires	July 31.	2010

5.	Lease Serial No.
	UTU-67170

ATION FOR PERMIT TO DRILL OR REENTER	6.	If Indian, Allotee	or Tribe Name
--------------------------------------	----	--------------------	---------------

APPLICATION FOR PERMIT TO	DRILL OR REENTER	NA NA		
la. Type of work: DRILL REENT	7 If Unit or CA A Greater Mon	greement, Name and No. nument Butte		
lb. Type of Well: Oil Well Gas Well Other	Single Zone Multip	8. Lease Name ar Greater Mon	nd Well No. Jument Butte E-25-8-16	
Name of Operator Newfield Production Company		9. API Well No. 43 013	3 50233	
3a. Address Route #3 Box 3630, Myton UT 84052	3b. Phone No. (include area code) (435) 646-3721	10. Field and Pool, Monument B	• •	
4. Location of Well (Report location clearly and in accordance with an	ty State requirements.*)	11. Sec., T. R. M. or	r Blk. and Survey or Area	
At surface SW/SW 629' FSL 631' FWL Sec. 24	I, T8S R16E (UTU-67170)	Sec. 24, T8S	R16E	
At proposed prod. zone NW/NW 10' FNL 10' FWL Sec	. 25, T8S R16E (UTU-34346)			
 Distance in miles and direction from nearest town or post office* Approximately 9.3 miles south of Myton, UT 		12. County or Paris Duchesne	h 13. State UT	
15. Distance from proposed*	16. No. of acres in lease	17. Spacing Unit dedicated to th	is well	
property or lease line, ft. Approx. 10' f/lse, NA' f/unit (Also to nearest drig. unit line, if any)	property of reaso fine, it.			
18. Distance from proposed location* to nearest well, drilling, completed,	19. Proposed Depth	20. BLM/BIA Bond No. on file		
applied for, on this lease, ft. Approx. 1320'	6,658'	WYB000493		
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will star	t* 23. Estimated dura	tion	
5449' GL	350 Qtr. 2010	O (7) days from SI	(7) days from SPUD to rig release	
	24. Attachments	,		
The following, completed in accordance with the requirements of Onshor	re Oil and Gas Order No.1, must be att	ached to this form:		
 Well plat certified by a registered surveyor. A Drilling Plan. 	4. Bond to cover th Item 20 above).	e operations unless covered by	an existing bond on file (see	
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).	Lands, the 5. Operator certification 6. Such other site states. BLM.	ation pecific information and/or plans	as may be required by the	
25. Signature	Name (Printed/Typed)		Date	
1/ Carde roses	Mandie Crozier		1/26/10	
Title Regulatory Specialist				
Approved by (Signature)	Name Jarries F	l. Sparger	Date NOV 0 3 2010	
Acting Assistant Field Manager Lands & Mineral Resources	Office VERNA	L FIELD OFFICE		
Apprication approval does not warrant or certify that the applicant holds	s legal or equitable title to those rights	s in the subject lease which would	I entitle the applicant to	
conduct operations thereon. Conditions of approval, if any, are attached.	IONS OF APPROVAL AT	TTACHED		
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a creates any false, fictitious or fraudulent statements or representations as t	ime for any person knowingly and w		or agency of the United	

(Continued on page 2)

*(Instructions on page 2)

TE SI MA 85 NAL OIDS NOS 10-08-300 8

AFMSS# 105X50016A **RECEIVED**

UNITED STATES DEPARTMENT OF THE INTERIOR **BUREAU OF LAND MANAGEMENT VERNAL FIELD OFFICE**

VERNAL, UT 84078

CONDITIONS OF APPROVAL FOR APPLICATION FOR PERMIT TO DRILL

Company:	Newfield Production Company	Location:	SWSW, Sec. 24, T8S, R16E (S) NWNW, Sec. 24, T9S, R16E (B)
Well No:	Greater Monument Butte E-25-8-16	Lease No:	UTU-67170
API No:	43-013-50233	Agreement:	Greater Monument Butte Unit

OFFICE NUMBER:

170 South 500 East

(435) 781-4400

OFFICE FAX NUMBER: (435) 781-3420

A COPY OF THESE CONDITIONS SHALL BE FURNISHED TO YOUR FIELD REPRESENTATIVE TO INSURE COMPLIANCE

All lease and/or unit operations are to be conducted in such a manner that full compliance is made with the applicable laws, regulations (43 CFR Part 3160), and this approved Application for Permit to Drill including Surface and Downhole Conditions of Approval. The operator is considered fully responsible for the actions of his subcontractors. A copy of the approved APD must be on location during construction, drilling, and completion operations. This permit is approved for a two (2) year period, or until lease expiration, whichever occurs first. An additional extension, up to two (2) years, may be applied for by sundry notice prior to expiration.

NOTIFICATION REQUIREMENTS

Location Construction (Notify Environmental Scientist)	-	Forty-Eight (48) hours prior to construction of location and access roads.
Location Completion (Notify Environmental Scientist)	-	Prior to moving on the drilling rig.
Spud Notice (Notify Petroleum Engineer)	-	Twenty-Four (24) hours prior to spudding the well.
Casing String & Cementing (Notify Supv. Petroleum Tech.)	-	Twenty-Four (24) hours prior to running casing and cementing all casing strings to: <u>ut_vn_opreport@blm.gov</u> .
BOP & Related Equipment Tests (Notify Supv. Petroleum Tech.)	-	Twenty-Four (24) hours prior to initiating pressure tests.
First Production Notice (Notify Petroleum Engineer)	-	Within Five (5) business days after new well begins or production resumes after well has been off production for more than ninety (90) days. RECEIVED

Page 2 of 8 Well: GMB E-25-8-16 11/4/2010

SURFACE USE PROGRAM CONDITIONS OF APPROVAL (COAs)

- All new and replacement internal combustion gas field engines of less than or equal to 300 designrated horsepower must not emit more than 2 gms of NO_x per horsepower-hour. This requirement does not apply to gas field engines of less than or equal to 40 design-rated horsepower.
- All and replacement internal combustion gas field engines of greater than 300 design rated horsepower must not emit more than 1.0 gms of NO_x per horsepower-hour.
- If there is an active Gilsonite mining operation within 2 miles of the well location, operator shall notify the Gilsonite operator at least 48 hours prior to any blasting during construction.
- If paleontological materials are uncovered during construction, the operator is to immediately stop work and contact the Authorized Officer (AO). A determination will be made by the AO as to what mitigation may be necessary for the discovered paleontologic material before construction can continue.

CONDITIONS OF APPROVAL:

- Construction and drilling is not allowed from May 1st June 15th to minimize impacts during Mountain plover nesting.
- If it is anticipated that construction or drilling will occur during the given timing restriction, a BLM or qualified biologist should be notified so surveys can be conducted. Depending upon the results of the surveys, permission to proceed may or may not be recommended or granted by the BLM biologist.
- Prior to construction, an invasive plants/noxious weeds inventory will be completed for all areas
 where surface disturbance will occur, and a completed Weed Inventory Form will be submitted to
 the BLM Authorized Officer.

Reclamation

• Reclamation will be completed in accordance with the Newfield Exploration Company Castle Peak and Eight Mile Flat Reclamation Plan on file with the Vernal Field Office of the BLM.

Seed Mix (Interim and Final Reclamation)

Common name	Latin name	lbs/acre	Recommended seed planting depth
Squirreltail grass	Elymus elymoides	3.0	1/4 - 1/2"
Needle and thread grass	Hesperostipa comata	3.0	1/2"
Idaho fescue	Festuca idahoensis	2.0	1/4 - 1/2"
Shadscale saltbush	Atriplex confertifolia	3.0	1/2"
Four-wing saltbush	Atriplex canescens	3.0	1/2" K

Page 3 of 8 Well: GMB E-25-8-16 11/4/2010

Gardner's saltbush	Atriplex gardneri	2.0	1/2**
Blue flax (Lewis flax)	Linum lewisii	2.0	1/8 - 1/4"

- All pounds are pure live seed.
- All seed and mulch would be certified weed free.
- Rates are set for drill seeding; double rate if broadcasting.

Monitoring and Reporting

- The operator shall submit a Sundry Notice (Form 3160-5) to the BLM Authorized Officer (AO) that designates the proposed site-specific monitoring and reference sites chosen for the location. A description of the proposed sites shall be included, as well as a map showing the locations of the proposed sites.
- The operator shall submit a Sundry Notice (Form 3160-5) to the BLM Authorized Officer (AO) three (3) growing seasons after reclamation efforts have occurred evaluating the status of the reclaimed areas in order to determine whether the BLM standards set forth in the Green River District Reclamation Guidelines have been met (30% or greater basal cover).

Page 4 of 8 Well: GMB E-25-8-16 11/4/2010

DOWNHOLE PROGRAM CONDITIONS OF APPROVAL (COAs)

SITE SPECIFIC DOWNHOLE COAs:

• The operator shall comply with all applicable requirements in the SOP (version: "Greater Monument Butte Green River Development Program", June 24, 2008). The operator shall also comply with applicable laws and regulations; with the lease terms, Onshore Oil and Gas Orders, NTL's; and with other orders and instructions of the authorized officer.

All provisions outlined in Onshore Oil & Gas Order #2 Drilling Operations shall be strictly adhered to. The following items are emphasized:

DRILLING/COMPLETION/PRODUCING OPERATING STANDARDS

- The spud date and time shall be reported orally to Vernal Field Office within 24 hours of spudding.
- <u>Notify Vernal Field Office Supervisory Petroleum Engineering Technician at least 24 hours in</u> advance of casing cementing operations and BOPE & casing pressure tests.
- All requirements listed in Onshore Order #2 III. E. Special Drilling Operations are applicable for air drilling of surface hole.
- Blowout prevention equipment (BOPE) shall remain in use until the well is completed or abandoned. Closing unit controls shall remain unobstructed and readily accessible at all times. Choke manifolds shall be located outside of the rig substructure.
- All BOPE components shall be inspected daily and those inspections shall be recorded in the daily drilling report. Components shall be operated and tested as required by Onshore Oil & Gas Order No. 2 to insure good mechanical working order. All BOPE pressure tests shall be performed by a test pump with a chart recorder and <u>NOT</u> by the rig pumps. Test shall be reported in the driller's log.
- BOP drills shall be initially conducted by each drilling crew within 24 hours of drilling out from under the surface casing and weekly thereafter as specified in Onshore Oil & Gas Order No. 2.
- Casing pressure tests are required before drilling out from under all casing strings set and cemented in place.
- No aggressive/fresh hard-banded drill pipe shall be used within casing.
- Cement baskets shall not be run on surface casing.

RECEIVED NOV 0 8 2010

Page 5 of 8 Well: GMB E-25-8-16 11/4/2010

- The operator must report all shows of water or water-bearing sands to the BLM. If flowing water is encountered it must be sampled, analyzed, and a copy of the analyses submitted to the BLM Vernal Field Office.
- The operator must report encounters of all non oil & gas mineral resources (such as Gilsonite, tar sands, oil shale, trona, etc.) to the Vernal Field Office, in writing, within 5 working days of each encounter. Each report shall include the well name/number, well location, date and depth (from KB or GL) of encounter, vertical footage of the encounter and, the name of the person making the report (along with a telephone number) should the BLM need to obtain additional information.
- A complete set of angular deviation and directional surveys of a directional well will be submitted to the Vernal BLM office engineer within 30 days of the completion of the well.
- While actively drilling, chronologic drilling progress reports shall be filed directly with the BLM, Vernal Field Office on a weekly basis in sundry, letter format or e-mail to the Petroleum Engineers until the well is completed.
- A cement bond log (CBL) will be run from the production casing shoe to the <u>top of cement</u> and shall be utilized to determine the bond quality for the production casing. Submit a field copy of the CBL to this office.
- Please submit an electronic copy of all other logs run on this well in LAS format to UT_VN_Welllogs@BLM.gov. This submission will supersede the requirement for submittal of paper logs to the BLM.
- There shall be no deviation from the proposed drilling, completion, and/or workover program as approved. Safe drilling and operating practices must be observed. Any changes in operation must have prior approval from the BLM Vernal Field Office.

RECEIVED

Page 6 of 8 Well: GMB E-25-8-16 11/4/2010

OPERATING REQUIREMENT REMINDERS:

- All wells, whether drilling, producing, suspended, or abandoned, shall be identified in accordance with 43 CFR 3162.6. There shall be a sign or marker with the name of the operator, lease serial number, well number, and surveyed description of the well.
- In accordance with 43 CFR 3162.4-3, this well shall be reported on the "Monthly Report of Operations" (Oil and Gas Operations Report ((OGOR)) starting with the month in which operations commence and continue each month until the well is physically plugged and abandoned. This report shall be filed in duplicate, directly with the Minerals Management Service, P.O. Box 17110, Denver, Colorado 80217-0110, or call 1-800-525-7922 (303) 231-3650 for reporting information.
- Should the well be successfully completed for production, the BLM Vernal Field office must be notified when it is placed in a producing status. Such notification will be by written communication and must be received in this office by not later than the fifth business day following the date on which the well is placed on production. The notification shall provide, as a minimum, the following informational items:
 - Operator name, address, and telephone number.
 - O Well name and number.
 - o Well location (1/41/4, Sec., Twn, Rng, and P.M.).
 - O Date well was placed in a producing status (date of first production for which royalty will be paid).
 - o The nature of the well's production, (i.e., crude oil, or crude oil and casing head gas, or natural gas and entrained liquid hydrocarbons).
 - o The Federal or Indian lease prefix and number on which the well is located; otherwise the non-Federal or non-Indian land category, i.e., State or private.
 - o Unit agreement and/or participating area name and number, if applicable.
 - o Communitization agreement number, if applicable.
- Any venting or flaring of gas shall be done in accordance with Notice to Lessees (NTL) 4A and needs prior approval from the BLM Vernal Field Office.
- All undesirable events (fires, accidents, blowouts, spills, discharges) as specified in NTL 3A will be reported to the BLM, Vernal Field Office. Major events, as defined in NTL3A, shall be reported verbally within 24 hours, followed by a written report within 15 days. "Other than Major Events" will be reported in writing within 15 days. "Minor Events" will be reported on the Monthly Report of Operations and Production.

 RECEIVED

Page 7 of 8 Well: GMB E-25-8-16 11/4/2010

• Whether the well is completed as a dry hole or as a producer, "Well Completion and Recompletion Report and Log" (BLM Form 3160-4) shall be submitted not later than 30 days after completion of the well or after completion of operations being performed, in accordance with 43 CFR 3162.4-1. Two copies of all logs run, core descriptions, and all other surveys or data obtained and compiled during the drilling, workover, and/or completion operations, shall be filed on BLM Form 3160-4. Submit with the well completion report a geologic report including, at a minimum, formation tops, and a summary and conclusions. Also include deviation surveys, sample descriptions, strip logs, core data, drill stem test data, and results of production tests if performed. Samples (cuttings, fluid, and/or gas) shall be submitted only when requested by the BLM, Vernal Field Office.

- All off-lease storage, off-lease measurement, or commingling on-lease or off-lease, shall have prior written approval from the BLM Vernal Field Office.
- Oil and gas meters shall be calibrated in place prior to any deliveries. The BLM Vernal Field Office Petroleum Engineers will be provided with a date and time for the initial meter calibration and all future meter proving schedules. A copy of the meter calibration reports shall be submitted to the BLM Vernal Field Office. All measurement facilities will conform to the API standards for liquid hydrocarbons and the AGA standards for natural gas measurement. All measurement points shall be identified as the point of sale or allocation for royalty purposes.
- A schematic facilities diagram as required by Onshore Oil & Gas Order No. 3 shall be submitted to
 the BLM Vernal Field Office within 30 days of installation or first production, whichever occurs
 first. All site security regulations as specified in Onshore Oil & Gas Order No. 3 shall be adhered to.
 All product lines entering and leaving hydrocarbon storage tanks will be effectively sealed in
 accordance with Onshore Oil & Gas Order No. 3.
- Any additional construction, reconstruction, or alterations of facilities, including roads, gathering lines, batteries, etc., which will result in the disturbance of new ground, shall require the filing of a suitable plan and need prior approval of the BLM Vernal Field Office. Emergency approval may be obtained orally, but such approval does not waive the written report requirement.
- No location shall be constructed or moved, no well shall be plugged, and no drilling or workover
 equipment shall be removed from a well to be placed in a suspended status without prior approval of
 the BLM Vernal Field Office. If operations are to be suspended for more than 30 days, prior
 approval of the BLM Vernal Field Office shall be obtained and notification given before resumption
 of operations.
- Pursuant to Onshore Oil & Gas Order No. 7, this is authorization for pit disposal of water produced from this well for a period of 90 days from the date of initial production. A permanent disposal method must be approved by this office and in operation prior to the end of this 90-day period. In order to meet this deadline, an application for the proposed permanent disposal method shall be submitted along with any necessary water analyses, as soon as possible, but no later than 45 days after the date of first production. Any method of disposal which has not been approved prior to the end of the authorized 90-day period will be considered as an Incident of Noncompliance and will be grounds for issuing a shut-in order until an acceptable manner for disposing of said water is provided and approved by this office.

Page 8 of 8 Well: GMB E-25-8-16 11/4/2010

• Unless the plugging is to take place immediately upon receipt of oral approval, the Field Office Petroleum Engineers must be notified at least 24 hours in advance of the plugging of the well, in order that a representative may witness plugging operations. If a well is suspended or abandoned, all pits must be fenced immediately until they are backfilled. The "Subsequent Report of Abandonment" (Form BLM 3160-5) must be submitted within 30 days after the actual plugging of the well bore, showing location of plugs, amount of cement in each, and amount of casing left in hole, and the current status of the surface restoration.

RECEIVED NOV 0 8 2010

DIV. OF OIL, GAS & MINING

Spid BLM - Vernal Field Office - Notification Form

Operator Newfield Exploration Rig Name/# Ross Rig # 26
Submitted By Xabier Lasa Phone Number 435-823-6014
Well Name/Number Greater Monument Butte E-25-8-16
Qtr/Qtr NW/NW Section 24 Township 8S Range 16E
Lease Serial Number UTU-67170
API Number 43-013-50233

<u>Spud Notice</u> – Spud is the initial spudding of the well, not drilling out below a casing string.

AM	Date/Time <u>1-28-11</u> I ☑ PM ☐	<u>8:00</u>		
Casi time	ng — Please report time cass. Surface Casing Intermediate Casing Production Casing Liner Other	asing i	run starts	s, not cementing
	Date/Time <u>1-28-11</u>	<u>2:00</u>	AM 🗌	PM 🔀
BOP	E Initial BOPE test at surfa BOPE test at intermediat 30 day BOPE test Other			
	Date/Time	····	AM 🗌	PM

Remarks <u>Spud w/ Ross # 26 @ 8:00 Am and run casing @ 2:00 PM on 1-28-11.</u>

and an experience of the second					
FÖRM 3160-5 (August 2007)		FORM APPROVED OMB No. 1004-0137 Expires: July 31,2010			
	BUREAU OF LAND MANA Y NOTICES AND REPC		5. Lease Serial	5. Lease Serial No.	
Do not use t	USA UTU-67				
abandoned w	vell. Use Form 3160-3 (AF	PD) for such proposals.	6. If Indian, Alle	ottee or Tribe Name.	
SUBMIT IN	TRIPLICATE - Other l	Instructions on page 2	1	/Agreement, Name and/or	
1. Type of Well			GMBU		
Oil Well Gas Well	Other		8. Well Name a		
2. Name of Operator NEWFIELD PRODUCTION CO	AMPANY		MON BUTTE		
3a. Address Route 3 Box 3630	JIMP AN I	3b. Phone (include are code,	9. API Well No. 4301350233		
Myton, UT 84052		435.646.3721	+301330233	ool, or Exploratory Area	
4 Location of Well (Footage,	Sec., T., R., M., or Survey Descri	iption)	GREATER M		
24			11. County or Page 11.	arish, State	
Section 26 T8S R16E			DUCHESNE,	UT	
12, CHECI	K APPROPRIATE BOX(E	ES) TO INIDICATE NATUR	E OF NOTICE, OR O	THER DATA	
TYPE OF SUBMISSION		TYPE OF	ACTION		
Notice of Intent	Acidize	Deepen	Production (Start/Resume)	☐ Water Shut-Off	
Done :	Alter Casing	Fracture Treat	Reclamation	Well Integrity	
Subsequent Report	Casing Repair	New Construction	Recomplete	X Other	
Final Abandonment	Change Plans	Plug & Abandon	Temporarily Abandon	Spud Notice	
r mai Abandonnent	Convert to Injector	Plug Back	Water Disposal		
Bond under which the work will be of the involved operations. If the of Final Abandonment Notices shall be inspection. On 1-29-11 MIRU ROSS	performed or provide the Bond No. of peration results in a multiple completing filed only after all requirements, including spud rig #29. Drill 310' of	nrface locations and measured and true von file with BLM/BIA. Required subsequion or recompletion in a new interval, a Fuluding reclamation, have been completed 12 1/4" hole with air mist. TIF% CaCL+ 1/4# Cello Flake.	ent reports shall be filed within a corn 3160-4 shall be filed once to and the operator has determine the W/7 Jt's 8 5/8" J-55 2	30 days following completion esting has been completed. d that the site is ready for final 4# csgn. Set @ 308.15.	
The state of the s				I	
The many control special states of the states of the special states of the states of t				RECEIVED	
The stylemetry in					
49				FEB 03 2011	
まっ - (1) -				DIV. OF OIL, GAS & MINING	
I hereby certify that the foregoing i	s true and	Title			
correct (Printed/ Typed)		Drilling Foreman			
Xabier Lasa Signature	1	Date Date			
- XXXIVI C	JG -	01/31/2011			

THIS SPACE FOR FEDERAL OR STATE OFFICE USE

Approved by
Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Office

Title

Title 18 U.S.C. Section 1001, and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false; fictitious and fraudulent statements or representations as to any matter within its jurisdiction

and the second

NEWFIELD PRODUCTION COMPANY - CASING & CEMENT REPORT

	. **		8 5/8"	_CASING SET AT	<u> </u>	308.15	_		
LAST CASING		SET AT	20	<u>.</u>	OPERATO	R	Newfield	Exploration	Company
DATUM	12				WELL	MON BU	TTE E-25-	3-16	
DATUM TO CUT OFF CASING 12				FIELD/PRO	DSPECT _	Monume	nt Butte		
DATUM TO BRA		FLANGE	12	 	CONTRAC	TOR & RIG	<u>#</u>	Ross # 29	
TD DRILLER		LOGO	SER						
HOLE SIZE	12 1/4"	***		-					

LOG OF CASING								· · · · · · · · · · · · · · · · · · ·	
PIECES			AKE - DES	CRIPTION	WT/FT	GRD	THREAD	CONDT	LENGTH
		Wellhead						Α	0.95
7-1-2	8 5/8"		oe.jt.43.00')	24	J-55	STC	A	296.3
Grande william	8 5/8"	Guide sho	е					Α	0.9
	<u> </u>								
1									
777								*,	
T MARLEY.									
			<u> </u>					***	
CASING INVENT			FEET	JTS	TOTAL LEN				298.15
TOTAL LENGTH		3	298.15	7	LESS CUT				2
LESS NON CSG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.85		4		UT OFF CS	G	12
PLUS FULL JTS			0		CASING SE	ET DEPTH			308.15
A Printer of the Prin			296.3	7	۱				
TOTAL CSG. DE		RDS)	296.3	7	COMPA	RE			
T									
BEGIÑ RUN CSC		Spud	8:00 AM	1/29/2011	1		OB		
CSG. IN HOLE			4:00 PM	1/29/2011	1		URFACE_	5	
BEGIN CIRC			1:09 PM	1/30/2011	RECIPROC	ATED PIP	No		
BEGIN PUMP CN			1:21 PM	1/30/2011					
BEGIN DSPL. CN	ИT		1:32 PM	1/30/2011	BUMPED P	LUG TO _	120		

1:40 PM

1/30/2011

PLUG DOWN

PLUG DOWN

CEMENT USED	CEM	MENT COMPANY-	BJ Services	
STAGE # SX	CEM	IENT TYPE & ADDITIV	/ES	
160	Class G+2%KCL+.25#CF mixed (@ 15.8ppg and 1.17 yield		
Y				
to a superior and the s				
Applyment Company of the Company of				
And the second s				
advancy contract transaction of the second				
and Control of the Co				
CENTRALIZER & SCRAT	CHER PLACEMENT		SHOW MAKE & SPACIN	NG .
Middle of first, top of se	cond and third for a total of	3.		
~ .				
COMPANY REPRESENT	ATIVE Xabier Lasa		DATE	1/30/2011

The second second

ADDRESS: RT. 3 BOX 3630 MYTON, UT 84052

OPERATOR: NEWFIELD PRODUCTION COMPANY

OPERATOR ACCT. NO.

N2695

02/01/11

Production Clerk

ACTION CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL LOCATION QQ SC IP RG COUNTY					SPUD DATE	EFFECTIVE DATE		
В	99999	17400	4301350444 430350444	GREATER MON BUTTE - 3-36-8-16H	NENW	36	88	16E	DUCHESNE	2/1/2011	3/38/11	
(SPRU	·····		BHL= SWSW						CONFID	MIAL	
CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	qq	SC WE	TP	TON RG	COUNTY	SPUD DATE	EFFECTIVE DATE	
В	99999	17400	4301334246	FEDERAL 1-35-8-15	NENE	35	88	15E	DUCHESNE	1/27/2011	2/28/11	
	GRRV										_	
CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	QQ	_ sc	WELL	LOCATION L RG	COUNTY	SPUD DATE	EFFECTIVE	
В	99999	17400	4301350237	GREATER MON BUTTE O-26-8-16	SWNW	26	88	16E	DUCHESNE	1/26/2011	3/28/11	
`	SRRV			BHL= SWNL	U							
ACTION CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	QQ	sc	WELL I	LOCATION RG	COUNTY	SPUD DATE	EFFECTIVE DATE	
В	99999	17400	430135022 0	GREATER MON BUTTE T-34-8-16	NWSW	35	88	16E	DUCHESNE	1/25/2011	3/28/11	
	GRRV			BHL = Sec.	34 SI	ESE	<u>.</u>					
ACTION	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	QQ	sc	WELL.	LOCATION RG	COUNTY	SPUD DATE	EFFECTIVE DATE	
В	99999	√ 17400	4301350233	GREATER MON BUTTE E-25-8-16	swsw	24	88		DUCHESNE	1/29/2011	2/28/11	
	GRRV			BHESee 25,	NWN	W				شميدين ويبهود		
ACTION CODE	CURRENT ENTITY NO.	NEW ENTITY NO.	API NUMBER	WELL NAME	QQ	SÇ	WELL	LOCATION RG	COUNTY	SPUD DATE	EFFECTIVE DATE	
В	99999	17400	4301350232	GREATER MON BUTTE P-24-8-16	swsw	24	88	16E	DUCHESNE	1/28/2011	2/28/11	
AOTIO:	GRRV		**************************************	BH= Si	vsw				<u> </u>			
A- 1	CODES (See Instructions on bac n new entity for new well (single v well to existing entity (group or a	veli only)		VED				111		Jentri Park		

E - ther (explain in comments section)

C - from one existing entity to another existing entity D - well from one existing entity to a new entity

DIV. OF OIL, GAS & MINING

FEB 1 4 2011

STATE OF UTAH

	DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS AND MINING 5. LEASE DESIGNATION AND SERIAL NUMBER: USA UTU-67170											
SUNDRY	Y NOTICES AND REPO	RTS ON WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:									
	ill new wells, significantly deepen existing wells belo al laterals. Use APPLICATION FOR PERMIT TO D		7. UNIT or CA AGREEMENT NAME: GMBU									
1. TYPE OF WELL: OIL WELL	GAS WELL □ OTHER	, , , , , , , , , , , , , , , , , , ,	8. WELL NAME and NUMBER: MON BUTTE E-25-8-16									
2. NAME OF OPERATOR:			9. API NUMBER:									
NEWFIELD PRODUCTION COM	(PANY		4301350233									
3. ADDRESS OF OPERATOR:		PHONE NUMBER	10. FIELD AND POOL, OR WILDCAT:									
Route 3 Box 3630	CITY Myton STATE UT	ZIP 84052 435.646.3721	GREATER MB UNIT									
4. LOCATION OF WELL: FOOTAGES AT SURFACE: 0631	1 FSL 0631 FWL		COUNTY: DUCHESNE									
OTR/OTR. SECTION. TOWNSHIP. RANGE.	MERIDIAN: , 26, T8S, R16E SWSW		STATE: UT									
11. CHECK APPROI	PRIATE BOXES TO INDICATE	NATURE OF NOTICE, REPO	ORT, OR OTHER DATA									
TYPE OF SUBMISSION		TYPE OF ACTION										
	ACIDIZE	DEEPEN	REPERFORATE CURRENT FORMATION									
NOTICE OF INTENT (Submit in Duplicate)	ALTER CASING	FRACTURE TREAT	SIDETRACK TO REPAIR WELL									
	I =		_									
Approximate date work will	CASING REPAIR	NEW CONSTRUCTION	TEMPORARITLY ABANDON									
	CHANGE TO PREVIOUS PLANS	OPERATOR CHANGE	TUBING REPAIR									
	CHANGE TUBING	PLUG AND ABANDON	VENT OR FLAIR									
SUBSEQUENT REPORT	CHANGE WELL NAME	PLUG BACK	WATER DISPOSAL									
(Submit Original Form Only)	CHANGE WELL STATUS	PRODUCTION (START/STOP)	WATER SHUT-OFF									
Date of Work Completion:	COMMINGLE PRODUCING FORMATIONS	RECLAMATION OF WELL SITE	X OTHER: - Weekly Status Report									
03/26/2011	CONVERT WELL TYPE	RECOMPLETE - DIFFERENT FORMATION										
	OMPLETED OPERATIONS. Clearly show all s completed on 03-26-11, attached is		rolumes, etc.									
NAME (PLEASE PRINT) Lucy Chavez-N	vaupoto	TITLE Administrative Ass	istant									
SIGNATURE Sug C	Jay - Mpue)	DATE 03/29/2011										
(This space for State use only)	_											

RECEIVED APR 07 2011

Daily Activity Report

Format For Sundry MON BUTTE E-25-8-16 1/1/2011 To 5/30/2011

3/9/2011 Day: 1

Completion

Rigless on 3/9/2011 - Rigged up Perforators WLT with mast and pack off tool. Ran CBL under pressure. WLTD was 6623' with TOC at 104'. - Nipple up frac head and Weatherford BOPs. Rig up Adler hot oiler and test casing, frac head, frac valves and BOP to 4500 psi. Rig up Perforators WLT with mast and pack off tool. Run CBL under pressure. WLTD was 6623' with TOC at 104'. Run in hole with 3-1/8" ported guns and perforate CP5 and CP4 sands as shown in perforation report. Rig down WLT and hot oiler. SIWFN w/ 158 BWTR.

Daily Cost: \$0

Cumulative Cost: \$15,365

3/16/2011 Day: 2

Completion

Rigless on 3/16/2011 - RU BJ Services and Extreme WL. Frac 1st stage. Perforate and frac remaining 4 stages. RD BJ Services and Extreme WL. RU flowback line. Flowback for 4 hrs, Rec 684 BTF. Well died. SIWFN w/ 1925 BWTR. - RU BJ Services and Extreme WL. Frac 1st stage. Perforate and frac remaining 4 stages. RD BJ Services and Extreme WL. RU flowback line. Flowback for 4 hrs, Rec 684 BTF. Well died. SIWFN w/ 1925 BWTR.

Daily Cost: \$0

Cumulative Cost: \$153,831

3/23/2011 Day: 3

Completion

WWS #3 on 3/23/2011 - MIRU WWS #3. Change out BOP. TIH w/ 4 3/4" chomp bit. Circulate sand bridge out @ 2290'. Continue PU tbg. EOT @ 4155'. SIWFN w/ 1908 BWTR. - MIRU WWS #3. ND Cameron BOP. NU Schaffer BOP. Talley, PU & RIH w/ 4 3/4" chomp bit & 2 7/8" J-55 tbg. Tagged sand bridge @ 2290'. RU Slaugh power swivel. Circulate through sand bridge @ 2320'. Circulate well clean. RD power swivel. Continue PU & RIH w/ tbg. EOT @ 4155'. SIWFN w/ 1908 BWTR.

Daily Cost: \$0

Cumulative Cost: \$158,819

3/24/2011 Day: 4

Completion

WWS #3 on 3/24/2011 - Drill out plugs. Tagged PBTD. LD 3 jts of tbg. RU to flow to production tanks overnight. - 750 psi on well. Bleed off pressure. Pumped 25 BW down tbg. Continue PU & RIH w/ tbg. Tagged sand bridge @ 4284'. C/O sand bridge. Tagged sand @ 4665'. C/O to CBP @ 4890' (Drilled out in 55 mins). Well started flowing hard. Circulate well for 3 hr while well bled down. Continue RIH w/ tbg. Tag plug @ 5520', Drilled out in 23 mins. Tag sand @ 5724', Plug @ 5910', Drilled out in 26 mins. Tagged fill @ 6537'. LD 3 jts of tbg. EOT @ 6474'. RU to flow to production tanks overnight. 1328 BWTR.

Daily Cost: \$0

Cumulative Cost: \$174,452

3/25/2011 Day: 5

Completion

WWS #3 on 3/25/2011 - C/O to PBTD. Circulate w/ 10# brine. TOH w/ tbg. LD bit. TIH w/ production tbg. Kill well w/ 10# brine. ND BOP. Set TA. NU WH. SIWFN w/ 1101 BWTR. - Flowed 10 bbls of oil and 227 bbls of wtr overnight. 690 psi on csg, 340 psi on tbg. Bleed off pressure. Circulate well to production tanks. TIH w/ tbg. Tagged fill @ 6570'. Circulate clean to PBTD @ 6667'. RD Slaugh power swivel. LD extra tbg. Circulate well w/ 250 bbls of 10# brine. TOH w/ tbg. LD bit. TIH w/ production tbg as follows: NC, 2- jts, SN, 1 jt, TA, 206 jts of 2 7/8" J-55 tbg. Well flowing while TIH. Circulate well w/ 260 bbls of 10# brine to kill. ND BOP. Set TA w/ 18,000#'s of tension. NU WH. SIWFN w/ 1101 BWTR.

Daily Cost: \$0

Cumulative Cost: \$189,835

3/26/2011 Day: 6

Completion

WWS #3 on 3/26/2011 - PU "A" grade rod string. Hang head, Space out rods. Pressure test w/ unit to 800 psi. RDMOSU. POP @ 1:00 PM w/ 144" SL @ 5 SPM. 1101 BWTR. FINAL REPORT!! - 150 psi on tbg, 550 psi on csg. Bleed off pressure. PU & RIH w/ "A" grade rod string as follows: Central hydraulic 2 1/2" X 1 3/4" X 24' RHAC, 1- 1" X 4' stabilizer pony, 4- 1 1/2" wt bars, 251- 7/8" guided rods (8 per), 1- 8', 1- 6', 1- 4', 2- 2' X 7/8" pony rods, 1 1/2" X 30 polish rod. Hang head, Space out rods. Pressure test w/ unit to 800 psi. RDMOSU. POP @ 1:00 PM w/ 144" SL @ 5 SPM. 1101 BWTR. FINAL REPORT!! **Finalized**

Daily Cost: \$0

Cumulative Cost: \$263,867

Pertinent Files: Go to File List

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB NO. 1004-0137 Expires: July 31, 2010

WELL	COMPL	ETION OF	RECOMPL	FTION	REPORT	ANDIOG

	٧	VELL	COMPL	ETIC	ON OR F	RECOMPL	ETI	ON RE	PORT	AND L	.OG				ease	Serial No.		
la. Type of	f Well	7	Oil Well	П	Gas Well	☐ Dry		Other								an, Allottee or	T-: b -	N
	f Completio				Work Over	Deepen		Plug Back	☐ Dif	f. Resvr.,								
			Other:			-								7. T GM		CA Agreeme	nt Na	me and No.
2. Name of NEWFIEL	f Operator _D EXPLO	DRATIC	ON COME	PANY										8. L	ease]	Name and Wel	l No.	BT E-25-8-16
3. Address			TE 1000 DE		O 80202			3	a. Phone (435) 646	No. <i>(incli</i>	ude are	a cod	2)	9. A	FI W	ell No. 50233	-141	B1 E-20-0-10
4. Location						ance with Fede	eral i		1.4		Tau	ine	ad			and Pool or Ex	plora	atory
At curfa	CA COOLE	DI 0.00	241 = 1441 /	014//01	*** 0=0					3HL h	1 EV 4 H:					R MB UNIT		
7 K Suria	°° 629 F	SL & D	31. FAAF (SW/S1	W) SEC. 2	24, T8S, R16	iE (l	JTU-671	70)		5 II	211)	11.	Sec., Surve	T., R., M., on I y or Area SEC		and [88, R16E
At top pr	od. interval	reporte	d below 5	2' FSL	& 89' FW	L (SW/SW)	SEC	C. 24, T8	S, R16E	(UTU-6	37170))		12.	Coun	ty or Parish	Ī	13. State
At total d	lepth 197'	FNL &	157' FEL	. (NE/ì	NE) SEC.	26, T8S, R1	6E ((UTU-73	(880					DUC	CHE	SNE		UT
14. Date S ₁ 01/29/20				Date T. 20/20	D. Reached	i			Date Com					17.	Eleva	tions (DF, RK	B, R	Γ, GL)*
18. Total D	epth: MI	670)5'	20,20		g Back T.D.:		6667					idge Plug		MD	_ 5461' KB		
21. Type I		/D 659		s Run ((Submit con	v of each)	TV	<u> کې D</u>	557		22. W	ac wel	l cored?	ZN	TVD	Yes (Submi	t on al	rusia)
						UTRON,GR	,CA	LIPER, (СМТ ВО	-	W	as DS	Γrun?	Z N	ة o	Yes (Submi	t repo	ort)
23. Casing											Di	irection	al Survey	? – N	ο,	Yes (Submi	t cop	y)
Hole Size	Size/G	rade	Wt. (#/ft.)	To	op (MD)	Bottom (M	D)	_	ementer pth		of Sks. of Cem		Slurry (BB		C	ement Top*		Amount Pulled
12-1/4"	8-5/8" J	-	24#	0		308'				160 CL		_	(DD	<u> </u>				
7-7/8"	5-1/2" J	J-55	15.5#	0		6692'	•			300 PF					104			
				ļ					V	400 50	/50 PC	oz						
	-			<u> </u>														
				ļ					· · · · · · · · · · · · · · · · · · ·			\dashv					,	
24. Tubing		0.00	<u> </u>															
Size 2-7/8"		Set (MI 2) 6514		er Deptl 6415'	1 (MD)	Size	\dashv	Depth Se	et (MID)	Packer D	Depth (N	<u>4D) </u>	Size		De	pth Set (MD)		Packer Depth (MD)
25. Produci	ng Interval	s							rforation l									
A) Green	Formatio River	n	4	то 766'	-	Bottom 6453'			forated In	terval			lize	No. F	Ioles		Per	f. Status
B)	14701		- -	700		J-100	_	6386-64 4766-58				.36" .34"		24 135		<u> </u>		
C)								4700-30	104			.54		133				
D)														······································				
27. Acid, F	racture, Tre Depth Inter		Cement So	ueeze,	etc.						1.00							
4766-6453		vai	Fr	ac w/	269799#':	s 20/40 sand	in 1	754 bbl		mount ar								
									<u> </u>	<u>-</u>			900					
28. Product	ion - Interv	al A						, ,										
Date First		Hours	Test			Gas	Wat	ter	Oil Grav	ity	Gas		Produ	ction M	ethod			
Produced 03/19/11	04/00/44	Tested	Produc			MCF	BBI		Corr. AF	PI	Grav	ity/	2-1/2	2" x 1-3	3/4" x	24' RHAC P	ump)
Choke	04/08/11 Tbg. Press.		24 Hr.		63 Oil	51 Gas	19 Wat		Gas/Oil		Wall	Statu						
Size	Flwg. SI	Press.	Rate			MCF	BBI		Ratio				CING					
28a. Produc	tion - Inter	ral B					L				L							
Date First		Hours	Test				Wat	er	Oil Grav	ity	Gas		Produ	ction Me	ethod			
Produced		Tested	Produc	tion E	3BL	MCF	BBI		Сопт. АР	1	Grav	rity						
	Tbg. Press.		24 Hr.			1	Wat		Gas/Oil		Well	Statu	3					
	Flwg. SI	Press.	Rate	▶	BBL	MCF	BBL	•	Ratio							RECEI	VE	=n
*(See instr	ections and	enaces f	or addition	al data	on nogo 2)		·										w £	- LJ

201 7		- 10								
	uction - Inte	Hours	Test	Oil	Gas	Water	Oil Gravity	Gas	Production Method	
Produced		Tested	Production	BBL	MCF	BBL	Corr. API	Gravity	1 Todae Hon Michiga	
Choke Size	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio	Well Status	. 1	
28c. Prod	uction - Inte	rval D	1		1	<u> </u>	,			
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gravity Corr. API	Gas Gravity	Production Method	
Choke Size	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/Oil Ratio	Well Status		
29. Dispo	sition of Gas	s (Solid, us	sed for fuel, ve	nted, etc.)						
SOLD & U	SED FOR FU	EL								
30. Sumn	nary of Poro	us Zones	(Include Aqui	fers):				31. Formati	on (Log) Markers	
	ng depth int					intervals and alling and shut-in	l drill-stem tests, pressures and	GEOLOGI	CAL MARKERS	
For	nation	Тор	Bottom		Desc	criptions, Conte	ents, etc.		Name	Top Meas. Depth
GREEN RI	VER	4766'	6453'					GARDEN GU GARDEN GU		4176' 4391'
								GARDEN GU POINT 3	LCH 2	4516' 4809'
								X MRKR Y MRKR		5053' 5084'
								DOUGALS CI BI CARBONA		5214' 5489'
								B LIMESTON CASTLE PEA		5638' 6114'
								BASAL CARB WASATCH	ONATE	6536' 6664'
32. Addit	ional remark	cs (include	plugging prod	cedure):						
33. Indica	te which ite	ms have be	en attached b	y placing	a check in the	appropriate bo	xes:			
									57 m	
		_	(1 full set req'o	•		Geologic Repor Core Analysis		eport Drilling Daily A	☑ Directional Survey Activity	
					mation is com	plete and corre	ect as determined fro	om all available re	cords (see attached instructions)*
N	ame (please	print) Lu	cy Chavez-l	Naupoto			Title Administ	rative Assistan	t	
	gnature	Re	en C	2e.g	More	2	Date 04/18/201	11		
Title 18 U. false, fictit	S.C. Section	n 1001 and dulent state	Title 43 U.S.	C. Section esentation	1212, make i s as to any ma	t a crime for an	ny person knowingly jurisdiction.	and willfully to	make to any department or ager	ncy of the United States any

(Continued on page 3)

NEWFIELD EXPLORATION

USGS Myton SW (UT) SECTION 24 E-25-8-16

Wellbore #1

Design: Actual

Standard Survey Report

24 February, 2011

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site: Well: **SECTION 24** E-25-8-16

Wellbore: Design:

Weilbore #1

Actual

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method: Database:

Well E-25-8-16

WELL @ 5461.0ft (NEWFIELD RIG #2)

WELL @ 5461.0ft (NEWFIELD RIG #2)

Minimum Curvature

EDM 2003.21 Single User Db

Project

USGS Myton SW (UT), DUCHESNE COUNTY, UT, USA

Map System: Geo Datum:

US State Plane 1983

North American Datum 1983

Map Zone:

Utah Central Zone

System Datum:

Mean Sea Level

Site

SECTION 24, SEC 24 T8S, R16E

0.0 ft

Site Position:

Lat/Long

Northing: Easting:

7,209,200.00 ft

2,041,800.00 ft

Latitude:

40° 6' 8.212 N

Well

Slot Radius:

Longitude: **Grid Convergence:** 110° 3' 53.957 W

0.92°

Position Uncertainty:

E-25-8-16, SHL LAT: 40 05 52.36, LONG -110 04 29.84

Well Position

+N/-S +E/-W 0.0 ft 0.0 ft

Northing: Easting:

7,207,551.65 ft

2,039,037.78 ft

Latitude: Longitude: 40° 5' 52.360 N

Position Uncertainty

0.0 ft

Wellhead Elevation:

5,461.0 ft

Ground Level:

110° 4' 29.840 W 5,449.0 ft

Wellbore

Wellbore #1

Magnetics

Model Name

Sample Date

Declination

(°)

Dip Angle (°)

Field Strength

(nT)

IGRF200510

2009/12/11

11.50

65.88

52,478

Design

Actual

Audit Notes:

Version:

1.0

Phase:

ACTUAL

Tie On Depth:

0.0

Vertical Section:

Depth From (TVD) (ft)

0.0

+N/-S (ft) 0.0

+E/-W (ft) 0.0

Direction (°)

223.38

Date 2011/02/24

Survey Program From (ft)

To (ft)

Survey (Wellbore)

Tool Name

Description

332.0

6,705.0 Survey #1 (Wellbore #1)

MWD

MWD - Standard

Survey

M	easured			Vertical			Vertical	Dogleg	Build	Turn
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	332.0	0.92	219.19	332.0	-2.1	-1.7	2.7	0.28	0.28	0.00
	362.0	1.10	227.70	362.0	-2.4	-2.0	3.2	0.78	0.60	28.37
	393.0	1.30	223.60	393.0	-2.9	-2.5	3.8	0.70	0.65	-13.23
	425.0	1.20	230.30	425.0	-3.4	-3.0	4.5	0.55	-0.31	20.94
	454.0	1.30	229.00	454.0	-3.8	-3.5	5.2	0.36	0.34	-4.48
	485.0	1.40	224.10	485.0	-4.3	-4.0	5.9	0.49	0.32	-15.81
	515.0	1.40	227.10	514.9	-4.8	-4.6	6.6	0.24	0.00	10.00
	546.0	1.60	226.00	545.9	-5.4	-5.1	7.4	0.65	0.65	-3.55
	577.0	1.80	223.80	576.9	-6.0	-5.8	8.3	0.68	0.65	-7.10
	607.0	2.00	219.80	606.9	-6.8	-6.5	9.3	0.80	0.67	-13.33
	638.0	2.40	220.20	637.9	-7.7	-7.2	10.5	1.29	1.29	1.29
	668.0	2.50	223.70	667.9	-8.6	-8.1	11.8	0.60	0.33	11.67

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site: Well: SECTION 24

Wellbore:

Wellbore #1

E-25-8-16

Local Co-ordinate Reference:

TVD Reference:

Well E-25-8-16

MD Reference:

North Reference:

WELL @ 5461.0ft (NEWFIELD RIG #2) WELL @ 5461.0ft (NEWFIELD RIG #2)

Survey Calculation Method:

Minimum Curvature

Survey										
,u,										
	Measured			Vertical			Vertical	Dogleg	Build	Turn
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100 ft)
	699.0	2.70	223.01	698.8	-9.6	-9.0	13.2	0.65	0.65	-2.23
	730.0	3.30	225.80	729.8	-10.8	-10.2	14.8	1.99	1.94	9.00
	760.0	3.80	228.80	759.7	-12.1	-11.5	16.7	1.78	1.67	10.00
	790.0	4.20	229.70	789.6	-13.4	-13.1	18.8	1.35	1.33	3.00
	820.0	4.60	228.30	819.6	-14.9	-14.9	21.1	1.38	1.33	-4.67
	851.0	5.00	228.20	850.4	-16.7	-16.8	23.6	1.29	1.29	-0.32
	883.0	5.40	228.20	882.3	-18.6	-19.0	26.5	1.25	1.25	0.00
	915.0	5.90	229.10	914.2	-20.7	-21.3	29.7	1.59	1.56	2.81
	946.0	6.30	229.70	945.0	-22.8	-23.8	33.0	1.31	1.29	1.94
	978.0	6.60	227.10	976.8	-25.2	-26.5	36.5	1.31	0.94	-8.13
	1,010.0	7.10	226.40	1,008.6	-27.8	-29.3	40.3	1.58	1.56	-2.19
	1,041.0	7.50	225.90	1,039.3	-30.5	-32.1	44.3	1.31	1.29	-1.61
	1,073.0	8.10	223.10	1,071.0	-33.6	-35.2	48.6	2.22	1.88	-8.75
	1,105.0	8.50	223.20	1,102.7	-37.0	-38.3	53.2	1.25	1.25	0.31
	1,137.0	9.20	222.70	1,134.3	-40.6	-41.7	58.2	2.20	2.19	-1.56
	1,167.0	9.80	223.60	1,163.9	-44.2	-41.7 -45.1	63.1	2.20	2.00	3.00
	1,200.0	10.40	225.60	1,196.4	-44.2 -48.4	-49.1	68.9	2.06	1.82	6.06
	1,232.0	10.70	225,50	1,227.8	-52.5	-53.3	74.7	0.94	0.94	-0.31
	1,263.0	11.20	223.90	1,258.3	-56.6	-57.5	80.6	1.89	1.61	-5.16
	1,295.0	11.70	222.60	1,289.6	-61.3	-61.8	87.0	1.76	1.56	-4.06
	1,327.0 1,358.0	12.50 13.20	222.00 221.30	1,320.9 1,351.1	-66.2 -71.4	-66.3 -70.9	93.7 100.6	2.53 2.31	2.50 2.26	-1.88 -2.26
	1,390.0	13.50	222.30	1,382.3	-76.9	-75.8	108.0	1.18	0.94	3.13
	1,422.0	13.80	222.00	1,413.4	-82.5	-80.9	115.5	0.96	0.94	-0.94
	1,453.0	13.90	222.10	1,443.5	-88.0	-85.9	122.9	0.33	0.32	0.32
	1,485.0 1,517.0	14.20 14.50	222.30 221.50	1,474.5	-93.8 -99.7	-91.1 -96.4	130.7 138.6	0.95 1.12	0.94 0.94	0.63 -2.50
				1,505.5						
	1,549.0	14.70	221.20	1,536.5	-105.7	-101.7	146.7	0.67	0.63	-0.94
	1,580.0	14.70	221.10	1,566.5	-111.6	-106.9	154.6	0.08	0.00	-0.32
	1,612.0	14.70	221.60	1,597.4	-117.7	-112.3	162.7	0.40	0.00	1.56
	1,644.0	14.70	222.20	1,628.4	-123.8	-117.7	170.8	0.48	0.00	1.88
	1,675.0	15.00	221.00	1,658.3	-129.7	-123.0	178.7	1,39	0.97	-3.87
	1,707.0	14.85	221.03	1,689.3	-135.9	-128.4	187.0	0.47	-0.47	0.09
	1,739.0	14.80	219.70	1,720.2	-142.2	-133.7	195.1	1.07	-0.16	-4.16
	1,770.0	15.00	219.40	1,750.1	-148.3	-138.7	203.1	0.69	0.65	-0.97
	1,802.0	14.90	219.60	1,781.1	-154.7	-144.0	211.3	0.35	-0.31	0.63
	1,834.0	14.90	220.00	1,812.0	-161.0	-149.3	219.5	0.32	0.00	1.25
	1,865.0	14.90	220.70	1,841.9	-167.1	-154.4	227.5	0.58	0.00	2.26
	1,897.0	14.50	220.30	1,872.9	-173.3	-159.7	235.6	1.29	-1.25	-1.25
	1,929.0	14.50	219.70	1,903.9	-179.4	-164.8	243.6	0.47	0.00	-1.88
	1,929.0	14.10	218.60	1,934.9	-179.4 -185.5	-169.8				
	1,961.0	14.10	218.00	1,934.9	-185.5 -191.4	-169.8 -174.4	251.5 258.9	1.51 1.68	-1.25 -1.61	-3.44 -1.94
	2,024.0	13.20	219.00	1,996.1	-197.2	-179.1	266.3	1.44	-1.25	3.13
	2,024.0	13.20	219.00 218.60	2,026.3	-197.2 -202.6	-179.1 -183.4	273.2	1.44	-1.25 -1.61	3.13 -1.29
				•						
	2,087.0	12.20	218.50	2,057.6	-208.0	-187.7	280.1	1.56	-1.56	-0.31
	2,119.0 2,151.0	11.70 11.40	220.00 221.50	2,088.9 2,120.2	-213.1 -217.9	-191.9 -196.1	286.7 293.1	1.84 1.33	-1.56 -0.94	4.69 4.69
	2,182.0			2,150.6		-200.1				
		10.90 10.50	221.90		-222.4		299.1	1.63	-1.61	1.29
	2,214.0		221.60	2,182.1	-226.9	-204.0	305.0	1.26	-1.25	-0.94
	2,246.0	10.40	221.10	2,213.6	-231.2	-207.9	310.8	0.42	-0.31	-1.56
	2,277.0	10.20	222.00	2,244.1	-235.4	-211.5	316.4	0.83	-0.65	2.90
	2,309.0	9.90	223.50	2,275.6	-239.5	-215.3	321.9	1.24	-0.94	4.69
	2,341.0	9.80	224.60	2,307.1	-243.4	-219.1	327.4	0.67	-0.31	3.44
	2,372.0	10.00	224.90	2,337.6	-247.2	-222.9	332.7	0.67	0.65	0.97

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site: Well: SECTION 24

Wellbore:

Wellbore #1 Actual

Design:

E-25-8-16

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well E-25-8-16

WELL @ 5461.0ft (NEWFIELD RIG #2)

WELL @ 5461.0ft (NEWFIELD RIG #2)

True

Minimum Curvature

EDM 2003.21 Single User Db

2.498.0 10.00 228.70 2.490.7 295.0 293.8 343.8 0.71 0.00 4.0 2.468.0 10.10 228.90 2.492.2 293.9 349.4 0.33 0.31 0.6 2.499.0 10.50 227.80 2.482.7 2.282.5 2.39.0 354.9 1.39 1.29 2.5 2.550.0 10.90 228.10 2.493.1 -266.4 2.43.2 360.7 1.30 1.29 0.9 2.556.2 11.00 228.00 2.556.0 -270.5 2.47.8 386.7 1.30 1.29 0.9 2.594.0 11.10 228.00 2.556.0 -274.6 2.52.3 37.29 0.73 0.31 -3.4 2.658.0 11.00 228.00 2.587.4 2.278.9 2.52.3 37.29 0.73 0.31 -3.4 2.658.0 11.00 228.00 2.587.4 2.278.9 2.56.7 379.0 0.52 0.31 2.1 2.857.0 11.00 228.10 2.817.8 2.830.0 2.510 349.9 0.05 0.00 0.00 2.868.0 11.30 225.50 2.848.2 -287.3 -265.4 391.1 0.95 0.94 -0.9 2.752.0 11.80 225.80 2.749.0 2.280.4 391.1 0.95 0.94 -0.9 2.752.0 11.80 225.80 2.770.9 -286.1 2.774.5 403.7 0.66 0.65 0.65 0.62 2.784.0 11.80 225.90 2.883.6 3.70.2 2.748.1 0.278.1 0.278.1 0.20.2 2.20.2	urvey									
(R)			A=i44-		TM 6	15/14/			And the second second	
2.404.0 10.00 225.40 2.388.1 -251.1 -226.8 338.3 0.27 0.00 1.5. 2.432.0 10.00 225.70 2.400.7 -255.0 -250.8 348.3 0.27 0.00 4.0 2.468.0 10.10 225.90 2.402.7 -255.0 -250.8 348.3 0.27 0.00 4.0 2.468.0 10.10 225.90 2.402.7 -255.0 -250.8 348.3 0.27 0.00 4.0 2.469.0 10.50 227.80 2.462.7 -262.5 -238.0 354.9 1.39 1.29 2.9 2.550.0 10.90 223.10 2.493.1 -266.4 -270.5 -247.8 366.7 1.30 1.29 2.9 2.550.0 10.90 223.10 2.493.1 -266.4 -270.5 -247.8 366.7 1.30 1.29 0.9 2.550.0 11.00 225.0 2.552.6 -270.5 -247.8 366.7 0.36 0.31 -0.9 2.554.0 11.10 225.0 2.552.6 -270.5 -247.8 366.7 0.36 0.31 -0.9 2.557.0 11.00 225.0 2.557.4 -278.9 -255.7 379.0 0.52 -0.31 -2.1 2.557.0 11.00 225.0 2.557.4 -278.9 -255.7 379.0 0.52 -0.31 -2.1 2.557.0 11.00 225.0 2.559.0 2.649.2 -287.3 -265.4 391.1 0.95 0.4 -0.6 2.752.0 11.80 225.80 2.649.2 -297.3 -265.4 391.1 0.95 0.4 -0.6 2.752.0 11.80 225.80 2.742.2 -300.7 -279.1 40.2 0.56 0.66 0.65 0.6 2.754.0 11.80 225.80 2.742.2 -300.7 -279.1 40.2 0.50 0.00 -2.8 2.816.0 12.00 222.9 2.259.0 2.742.2 -283.7 -305.4 -283.7 416.8 0.90 0.83 -3.1 2.248.0 11.90 222.2 2.259.0 2.742.2 -283.7 416.8 0.90 0.33 -2.1 2.248.0 11.90 222.2 2.855.2 -314.9 -222.6 429.9 0.74 0.32 -3.2 2.810 1.10 11.80 222.5 0 2.806.8 -306.4 -288.7 416.8 0.90 0.83 -3.1 2.248.0 11.90 222.2 0.855.2 -344.9 -222.6 429.9 0.74 0.32 -3.2 2.810 1.10 11.80 222.5 0 2.806.8 -338.8 -306.7 4.82.5 0.50 -3.1 2.874.0 11.80 222.5 0 2.806.8 -324.5 -301.4 442.8 1.45 -0.9 0.3 2.842.0 11.50 222.5 0 2.806.8 -324.5 -301.4 442.8 1.45 -0.9 0.3 2.941.0 11.50 222.5 0 2.806.8 -324.5 -301.4 442.8 1.45 -0.9 0.3 3.330.0 10.70 220.80 2.891.0 -338.4 -313.7 40.8 0.0 0.0 2.3 3.330.0 10.70 220.80 2.891.0 -338.4 -331.3 400.0 0.66 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.										
2,486.0 10.00 228.00 2,432.2 2.284.9 349.4 0.33 0.31 0.6 2,486.0 10.10 228.90 2,432.2 2.284.9 349.4 0.33 0.31 0.6 2,480.0 10.50 228.10 2,482.7 2.282.5 2.294.9 349.4 0.33 0.31 0.6 2,480.0 10.50 228.10 2,482.7 2.282.5 2.294.9 349.4 0.33 0.31 0.6 2,2850.0 11.00 228.00 2,483.1 2.266.4 2.20.5 2.432 3.272.9 0.73 0.31 1.29 0.8 2,586.0 11.10 228.00 2,586.6 2.20.5 2.448.8 386.7 1.30 1.29 0.8 2,586.0 11.00 228.00 2,587.4 2.278.9 2.266.7 37.9 0.73 0.31 1.34 2,686.0 11.00 228.00 2,874.4 2.278.9 2.266.7 37.9 0.52 0.31 2.1 2,587.0 11.00 228.00 2,874.4 2.278.9 2.266.7 37.9 0.52 0.31 2.1 2,587.0 11.00 228.00 2,874.4 2.278.9 2.266.1 37.0 0.52 0.31 2.1 2,587.0 11.00 228.00 2,874.4 2.278.9 2.266.0 381.1 0.65 0.04 2.6 2,274.0 11.80 228.80 2,740.9 2.266.1 2.270.0 374.4 0.98 0.94 2.6 2,274.0 11.80 228.80 2,740.9 2.266.1 2.274.5 400.7 0.66 0.65 0.00 2.8 2,284.0 11.90 222.80 2,886.5 2.70.9 2.286.1 2.274.5 400.7 0.66 0.65 0.00 2.8 2,284.0 11.90 222.80 2,886.5 2.314.9 2.283.7 418.8 0.90 0.83 2.1 2,284.0 11.90 222.90 2,885.2 3.314.9 2.283.7 418.8 0.90 0.83 2.1 2,284.0 11.90 222.90 2,885.2 3.314.9 2.226.8 429.9 0.74 0.32 2.2 2,281.0 12.00 222.90 2,885.2 3.314.9 2.226.8 429.9 0.74 0.32 2.2 2,281.0 12.00 222.90 2,885.2 3.314.9 2.226.8 429.9 0.74 0.32 2.2 2,281.0 12.00 222.90 2,885.2 3.314.9 2.226.8 429.9 0.74 0.32 2.2 2,281.0 12.00 222.90 2,885.2 3.314.9 3.206.4 428.9 0.74 0.32 2.2 2,281.0 12.00 222.90 3.286.9 3.338.8 3.308.9 0.74 0.38 2.2 2,281.0 12.00 2.22.90 3.006.4 3.338.9 3.308.9 0.74 0.32 2.2 2,281.0 12.00 2.22.90 3.006.9 3.308.9 3.30										
2,486.0										1.56
2,480 0 10.50 227.80 2,482.7 322.5 30.0 354.9 1.39 1.29 2.9 2.530 0 10.30 228.10 2,485.1 286.4 243.2 380.7 1.30 1.29 0.09 2.530 1.00 228.10 2,485.1 286.4 243.2 380.7 1.30 1.29 0.09 2.546.5 270.5 286.0 11.00 226.00 2,587.4 270.5 256.7 370.0 0.52 -0.31 -0.54 2,550 11.00 226.00 2,587.4 278.9 256.7 379.0 0.52 -0.31 -0.54 2,550 11.00 226.00 2,587.4 278.9 286.0 379.0 0.62 -0.01 22.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.										4.06
2,580.0 10,90 228,10 2,493.1 -266.4 -243.2 800.7 1,30 1.29 0.9 2,562.0 111,00 228,00 2,567.6 -270.5 -247.8 808.7 0.36 0.31 -3.4 2,6262.0 111,00 228,00 2,567.4 -278.9 -256.7 372.9 0.73 0.31 -3.4 2,6262.0 111,00 228,00 2,567.4 -278.9 -256.7 372.9 0.73 0.01 -3.4 2,1 2,1 2,1 2,1 2,1 2,1 2,1 2,1 2,1 2,1	2,468.	0 10.10	226.90	2,432.2	-258.8	-234.9	349.4	0.33	0.31	0.63
2,550.0 10,90 228.10 2,493.1 -266.4 -243.2 360.7 1,30 1,29 0.9 2,562.0 11,00 227.80 2,554.6 -270.5 -247.8 366.7 0.36 0.31 -3.4 2,656.0 11,100 228.0 2,559.6 -274.6 -252.3 372.9 0.73 0.31 -3.4 2,657.0 11,00 228.0 2,587.8 -288.0 -265.7 379.0 0.52 -0.31 -2.1 2,657.0 11,00 228.0 2,647.8 -288.0 -265.4 391.1 0.95 0.04 -0.8 2,677.0 11,80 225.6 2,680.6 -297.3 -265.4 391.1 0.95 0.04 -0.8 2,772.0 11,80 225.6 2,680.6 2,971.7 -270.1 403.7 0.86 0.94 -0.8 2,772.0 11,80 225.8 2,770.9 -286.1 -274.5 403.7 0.86 0.94 -0.8 2,774.0 11,80 225.8 2,770.9 -366.1 -274.5 403.7 0.86 0.94 -0.8 2,784.0 11,80 225.8 2,770.9 -305.4 -283.7 416.8 0.90 0.63 -3.1 2,846.0 11,90 222.30 2,204.9 -310.2 -288.3 423.5 -55 -0.31 -2.1 2,879.0 12,00 222.2 2,283.2 -314.9 -292.6 429.9 0.74 0.32 -32.2 2,911.0 11,95 222.5 2,266.8 -324.5 -301.4 442.8 1.45 -1.45 0.0 2,974.0 11,40 221.40 2,292.2 -329.2 -305.6 449.2 0.75 -0.31 -3.4 3,006.0 11,00 221.0 2,299.6 -333.8 -300.7 455.4 1.26 -0.5 -0.1 3,039.0 10,50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.1 3,101.0 10.50 222.70 3,084.4 -351.3 -325.3 479.8 0.46 0.00 2.5 3,180.0 10.50 222.70 3,084.4 -351.3 -325.3 479.8 0.46 0.00 2.5 3,180.0 10.50 222.70 3,084.4 -351.3 -325.3 479.8 0.46 0.00 2.5 3,180.0 10.70 220.80 3,344.0 -358.1 -337.6 445.5 1.46 0.00 -2.5 3,180.0 10.50 222.70 3,084.4 -351.3 -325.3 479.8 0.46 0.00 2.5 3,180.0 10.50 222.70 3,084.4 -351.3 -325.3 479.8 0.46 0.00 2.5 3,180.0 10.50 222.70 3,084.4 -351.3 -325.3 479.8 0.46 0.00 0.6 3,133.0 10.50 222.70 3,084.4 -351.3 -365.9 508.0 1.0 0.6 0.0 3,133.0 10.70 220.80 3,345.9 -333.3	2,499.	.0 10.50	227.80	2,462.7	-262.5	-239.0	354.9	1.39	1.29	2.90
2.5862.0	2,530.	0 10.90	228.10	2,493.1		-243.2	360.7			0.97
2,594.0 11.10 228.00 2,586.0	2,562.	0 11.00								-0.94
2,657.0 11.00 228.10 2,817.8 -283.0 -261.0 384.9 0.06 0.00 0.3. 2,688.0 11.30 225.90 2,649.2 -287.3 -2655.4 391.1 0.95 0.94 -0.6 2,772.0 11.60 225.60 2,690.6 -291.7 -270.0 397.4 0.96 0.94 -0.6 2,775.2 0 11.80 225.80 2,690.6 -291.7 -270.0 397.4 0.96 0.94 -0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	2,594.	0 11.10	226.70	2,556.0						-3.44
2,888.0	2,626.	0 11.00	226.00	2,587.4	-278.9	-256.7	379.0	0.52	-0.31	-2.19
2,689.0 113.0 225.90 2,689.2 -287.3 -285.4 391.1 0.95 0.94 -0.6 2,710.0 11.80 225.60 2,680.6 -291.7 -270.0 397.4 0.98 0.94 -0.9 2,752.0 111.80 225.60 2,680.6 -291.7 -270.0 397.4 0.98 0.94 -0.9 2,752.0 111.80 225.80 2,710.9 -296.1 -274.5 403.7 0.66 0.65 0.6 0.6 0.65 0.6 0.6 0.65 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	2 657	0 11.00	226.10	2 617 8	383.0	261.0	384.0	0.06	0.00	0.33
2.7721.0										
2,752.0										
2,784.0										
2.816.0 12.00 223.90 2,773.5 -305.4 -283.7 416.8 0.90 0.63 -3.1 2.2448.0 119.0 223.20 2,804.9 -310.2 -288.3 423.5 0.55 -0.31 -2.1 2.879.0 12.00 222.20 2,855.2 -314.9 -292.6 429.9 0.74 0.32 -3.2 2.911.0 119.5 222.50 2,866.5 -319.8 -297.1 436.5 0.25 -0.16 0.9 2.942.0 11.50 222.50 2,866.5 -319.8 -297.1 436.5 0.25 -0.16 0.9 2.942.0 11.50 222.50 2,866.8 -324.5 -301.4 442.8 1.45 -1.45 0.0 2.974.0 11.40 221.40 2,928.2 -322.2 -305.6 449.2 0.76 -0.31 -3.4 3,006.0 11.00 221.60 2,959.6 -333.8 -309.7 455.4 1.28 -1.25 0.6 3.308.0 10.70 220.80 2,991.0 -338.4 -313.7 461.4 1.05 -0.94 -2.5 3,008.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.11 -0.05 221.90 3,033.0 -347.0 -321.4 472.9 0.11 -0.00 -3.6 3,101.0 10.50 221.90 3,033.0 -347.0 -321.4 472.9 0.11 -0.00 -3.6 3,104.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.6 3,184.0 10.20 225.70 3,144.9 -355.3 -322.2 484.3 1.99 -0.97 9.6 3,186.0 10.20 222.80 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7 3,228.0 10.70 227.80 3,177.9 -363.1 -337.8 495.8 1.64 1.56 2.8 3,280.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 2.1 3,333.0 11.50 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 2.1 3,333.0 11.50 227.90 3,344.4 -359.2 -335.3 490.0 0.66 0.00 3.7 3,328.0 10.70 227.80 3,177.9 -363.1 -337.8 495.8 1.04 0.94 1.8 3,335.0 11.70 227.80 3,177.9 -363.1 -337.8 495.8 1.04 0.94 1.8 3,335.0 11.70 227.90 3,364.1 -368.8 -366.1 533.4 0.98 0.63 3,73.3 3,42.0 501.8 1.62 2.7 0.9 3,344.0 11.50 227.90 3,364.1 -368.8 -366.1 533.4 0.98 0.63 3,73.3 3,440.0 11.50 227.90 3,364.1 -368.8 -366.1 533.4 0.98 0.63 3,73.3 3,400.0 11.00 222.80 3,348.9 3,448.5 3,449.5 3										
2,848.0										
2,879.0 12.00 222.00 2,835.2 314.9 -926.6 429.9 0,74 0,32 3.2 2,911.0 11.95 222.50 2,886.5 -310.8 -297.1 436.5 0,25 -0.16 0.9 2,942.0 11.50 222.50 2,886.8 -324.5 -301.4 442.8 1.45 -1.45 0.0 2,974.0 11.40 221.60 2,928.2 -329.2 -305.6 449.2 0,75 -0.31 -3.4 3,066.0 11.00 221.60 2,959.6 -333.8 -309.7 455.4 1.26 -1.25 0.6 3,038.0 10.70 220.80 2,991.0 -338.4 -313.7 461.4 1.05 -0.94 -2.5 3,089.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.1 3,101.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0,11 0.00 -0.6 3,133.0 10.50 222.70 3,084.4 -351.3 -325.3 478.8 0.46 0.00 2.5 3,184.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.6 3,280.0 11.20 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,280.0 11.20 227.10 3,039.3 -367.3 -342.0 501.8 1.62 1.56 -2.1 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.66 3,333.0 11.70 228.30 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -3.4 3,335.5 11.40 226.80 3,324.5 -380.2 -355.9 50.8 1.01 -0.94 1.88 3,336.0 11.70 228.30 3,323.8 -384.5 -380.2 -555.9 50.8 1.01 -0.94 1.88 3,3418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.89 0.83 3.7 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 4.0 3,461.0 12.50 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 1.88 3,560.0 11.50 222.10 3,544.9 -417.0 -393.1 573.1 0.40 0.31 1.22 3,766.0 12.00 222.80 3,549.9 -417.0 -393.1 573.1 0.40 0.31 1.22 3,766.0 11.80 229.20 3,581.2 -421.9 -397.4 579.6 0.50 -0.31 1.33 3,755.0 11.80 222.70 3,581.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,766.0 12.00 222.20 3,764.5 -441.4 -414.8 605.7 0.88 0.32 2.98 3,983.0 11.70 222.20 3,764.5 -441.4 -414.8 605.7 0.88 0.32 2.98 3,983.0 11.70 222.20 3,764.5 -441.4 -414.8 605.7 0.88 0.32 2.98 3,983.0 11.70 222.20 3,764.5 -441.4 -414.8 605.7 0.88 0.32 2.98 3,983.0 11.70 222.20 3,764.5 -441.4 -444.8 605.7 0.88 0.32 2.98 3,983.0 11.70 222.20 3,764.5 -441.4 -444.8 605.7 0.48 0.33 -1.25 2.11 3,983.0 11.70 223.60 3,581.2 -421.9 -397.4 579.6 0.55 0.50 0.31 1.80 3,785.0 11.90 222.30 3,574.2 -436.7 -440.4 599.3 0.41 -0.31 1.25 2.11 3,988.0 11.70 222.00 3,767.1 -451.2 -42										-3.13
2,911.0 11.95 222.50 2,866.5 -319.8 -297.1 436.5 0,25 -0.16 0.9 2,942.0 11.50 222.50 2,866.8 -324.5 -301.4 442.8 1.45 -1.45 0.0 2,974.0 11.40 221.40 2,928.2 -329.2 -305.6 449.2 0,75 -0.31 -3.4 3,006.0 11.00 221.60 2,959.6 -333.8 -309.7 455.4 1.26 -1.25 0.6 3,038.0 10.70 220.80 2,991.0 -389.4 -313.7 461.4 1.05 -0.94 -2.5 3,069.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.1 3,101.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0.11 0.00 -0.6 3,133.0 10.50 222.70 3,084.4 -361.3 -325.3 478.8 0.66 0.00 2.5 3,164.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.6 3,166.0 10.20 225.60 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7 3,228.0 10.70 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,269.0 11.20 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.8 3,333.0 11.70 226.30 3,271.0 -375.8 -351.2 514.4 0,70 0.31 -3.4 3,335.0 11.70 226.80 3,346.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,338.0 11.70 226.80 3,346.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,338.0 11.70 226.80 3,394.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,348.0 11.20 227.30 3,339.8 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,345.0 11.20 227.30 3,339.8 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,345.0 11.70 226.30 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -3.1 3,450.0 12.20 226.60 3,390.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,348.0 11.70 226.80 3,456.9 -402.8 -386.1 533.4 0.98 0.83 3.7 3,513.0 12.30 228.60 3,485.2 -407.7 -384.2 560.3 1.02 -0.94 1.8 3,560.0 11.20 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 1.8 3,560.0 11.80 229.20 3,581.8 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,670.0 11.80 229.20 3,581.8 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,760.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 1.8 3,760.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 1.8 3,560.0 11.80 219.20 3,581.8 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,680.0 11.70 222.30 3,581.8 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,760.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 1.8 3,760.0 12.00 222.80 3,581.9 -412.3 -388.6 566.6 1.51 -0.40 0.31 1.22 3,760.0 11.80 229.20 3,581.9 -416.9 -436.2 638.2 0.65 0.3										-2.19
2,942.0 11.50 222.50 2,898.8 -324.5 -301.4 442.8 1.45 -1.45 0.0 2,974.0 11.40 221.40 2,998.2 -329.2 -306.6 449.2 0.75 -0.31 -3.4 3,008.0 11.70 220.80 2,991.0 -338.4 -313.7 461.4 1.05 -0.94 -2.5 3,098.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.11 3,101.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0.11 0.00 -0.65 4.11 3,184.0 10.50 222.70 3,084.4 -351.3 -325.3 478.8 0.66 0.00 2.5 3,184.0 10.20 225.70 3,144.4 <t->359.2 -333.3 490.0 0.66 0.00 3.7 3,280.0 11.20 227.10 3,208.3 -367.3 -342.0 501.8 1.64 1.56 2.21 <td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-3.23</td></t->										-3.23
2,974.0 11.40 221.40 2,928.2 -329.2 -305.6 449.2 0.75 -0.31 -3.4 3,006.0 11.00 221.60 2,959.6 -333.8 -309.7 455.4 1.26 -1.25 0.6 3,089.0 10.70 220.80 2,991.0 -338.4 -313.7 461.4 1.05 -94 -2.5 3,099.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.1 3,101.0 10.50 222.70 3,084.4 -351.3 -325.3 478.8 0.46 0.00 2.5 3,164.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.6 3,196.0 10.20 225.90 3,146.4 -359.2 -333.3 490.0 0.06 0.00 3.7 3,228.0 10.70 227.80 3,177.9 -363.1 -342.0 501.8 1.62 1.56 -2.1 3,291.0 11.60 227.30 3,293.7 -371.4 -346.5 508.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.94</td></td<>										0.94
3,006.0 11.00 221.60 2,959.6 333.8 -309.7 455.4 1.26 -1.25 0.6 3,038.0 10.70 220.80 2,991.0 33.84 -313.7 461.4 1.05 -0.94 -2.5 3,069.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.1 3,101.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0.11 0.00 -0.6 3,133.0 10.50 222.70 3,084.4 -351.3 -325.3 478.8 0.46 0.00 2.5 3,164.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.6 3,196.0 10.20 226.90 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7 3,228.0 10.70 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,260.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.1 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.6 3,323.0 11.70 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,336.0 11.50 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,336.0 11.50 226.60 3,395.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,481.0 12.50 226.60 3,425.7 -397.9 -374.8 546.6 0.77 0.65 1.9 3,410.0 12.30 226.60 3,456.9 -402.8 -399.3 -370.0 540.0 2.06 1.88 4.0 3,481.0 12.50 226.00 3,456.9 -402.8 -379.6 553.5 1.85 0.83 -81. 3,576.0 11.60 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 1.8 3,576.0 11.60 222.80 3,581.2 -421.9 -397.4 578.1 0.40 0.31 -1.29 3.8 3,608.0 11.70 223.60 3,581.2 -421.9 -397.4 578.1 0.40 0.31 -1.29 3.8 3,608.0 11.70 223.60 3,581.2 -421.9 -397.4 598.0 1.02 -0.94 1.8 3,608.0 11.70 223.60 3,581.2 -421.9 -397.4 598.0 1.02 -0.94 1.8 3,608.0 11.70 223.00 3,642.9 -431.8 -400.5 592.6 0.50 -0.31 1.8 3,795.0 11.60 224.00 3,581.2 -421.9 -397.4 598.0 0.50 -0.31 1.8 3,795.0 11.60 222.00 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 12.10 222.20 3,764.2 -436.7 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 12.10 222.20 3,764.2 -436.7 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 11.70 220.0 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 11.70 220.0 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 11.70 220.0 3,794.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 11.70 220.0 3,794.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 11.70 220.0 3,794.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 11.70 220.0 3,793.8 -400.0 466.9 432.0 631.	2,942.	u 11.50	222.50	2,896.8	-324.5	-301.4	442.8	1.45	-1.45	0.00
3,038.0 10.70 220.80 2,991.0 338.4 -313.7 481.4 1.05 -0.94 2.25.8 3,069.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.1 3,101.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0.11 0.00 -0.6 3,133.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0.11 0.00 -0.6 3,133.0 10.50 222.70 3,084.4 -361.3 -325.3 478.8 0.46 0.00 2.5 3,184.0 10.20 225.70 3,144.9 -355.3 -329.2 484.3 1.99 -0.97 9.6 0.00 3,7 3,195.0 10.20 226.80 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7 3,228.0 10.70 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,280.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.1 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.6 3,323.0 11.70 226.30 3,271.0 -375.8 -351.2 514.4 0,70 0.31 -3.1 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.8 3,386.0 11.50 226.70 3,332.8 -384.5 -380.4 526.9 0.35 0.32 -0.6 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.83 3.7 3,450.0 12.30 226.60 3,395.4 -393.3 -357.0 540.0 2.06 1.88 4.0 3,461.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 223.40 3,456.9 402.8 -379.6 553.5 1.85 0.03 1.02 -0.94 1.8 3,545.0 11.60 222.80 3,488.2 407.7 -384.2 560.3 1.02 -0.94 1.8 3,576.0 11.60 224.00 3,581.6 412.3 -388.6 566.6 1.51 -1.29 3.6 3,545.0 11.00 222.80 3,488.2 407.7 -384.2 560.3 1.02 -0.94 1.8 3,576.0 11.60 224.00 3,581.6 412.3 -388.6 566.6 1.51 -1.29 3.6 3,575.0 11.60 224.00 3,581.6 442.3 -388.6 566.6 1.51 -1.29 3.6 3,593.0 11.70 223.80 3,549.9 471.0 -393.1 573.1 0.40 0.31 -1.2 3,576.0 11.60 224.00 3,581.6 442.3 -388.6 566.6 1.51 -1.29 3.6 3,593.0 11.70 222.20 3,744.5 441.4 414.8 605.7 0.68 0.57 0.69 0.37 3,735.0 11.90 222.20 3,744.5 441.4 414.8 605.7 0.68 0.32 2.9 3,735.0 11.90 222.20 3,764.5 441.4 414.8 605.7 0.68 0.30 1.30 1.2 0.00 221.90 3,644.2 431.8 400.0 592.6 0.50 0.31 1.8 3,735.0 11.90 222.20 3,764.5 441.4 414.8 605.7 0.68 0.32 2.9 3,765.0 11.70 222.00 3,767.1 441.4 414.8 605.7 0.68 0.32 2.9 3,765.0 11.70 222.00 3,767.1 441.4 414.8 605.7 0.68 0.32 2.9 3,766.0 12.00 222.20 3,764.5 441.4 441.4 665.6 6.26 6.26 4.1.99 0.00 6.8 4	2,974.	0 11.40	221.40	2,928.2	-329.2	-305.6	449.2	0.75	-0.31	-3.44
3,089.0 10.50 222.10 3,021.5 -342.7 -317.5 467.1 1.01 -0.65 4.11 3,101.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0.11 0.00 -0.6	3,006.	0 11.00	221.60	2,959.6	-333.8	-309.7	455.4	1.26	-1.25	0.63
3,101.0 10.50 221.90 3,053.0 -347.0 -321.4 472.9 0.11 0.00 -0.66 3,133.0 10.50 222.70 3,084.4 -351.3 -325.3 478.8 0.46 0.00 2.5 3,184.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.61 3,196.0 10.20 226.90 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7 3,228.0 10.70 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,260.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,209.3 11.70 227.80 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -2.11 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.81 3,386.0 11.50 226.70 3,332.8 -384.5 -360.1 526.9 0.35 0.32 -0.66 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.7 3,450.0 12.30 226.60 3,395.4 -380.3 -365.1 533.4 0.98 0.63 3.7 3,450.0 12.30 226.60 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 228.00 3,455.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 228.00 3,455.9 -402.8 -379.6 553.5 1.85 -0.63 8-1.1 3,576.0 11.60 224.00 3,518.6 -412.3 -388.2 -407.7 -384.2 560.3 1.02 -0.94 1.81 3,576.0 11.60 224.00 3,518.6 -412.3 -388.2 -407.7 -384.2 560.3 1.02 -0.94 1.81 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.80 3,642.9 -417.0 -383.1 573.1 0.40 0.31 -1.22 3,604.0 11.80 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.80 3,642.9 -417.0 -383.1 573.1 0.40 0.31 -1.22 3,604.0 11.80 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.00 3,642.9 -431.8 -406.0 592.6 0.50 -3.31 1.81 3,5760.0 11.00 222.30 3,642.9 -431.8 -406.0 592.6 0.50 -3.31 1.81 3,5760.0 11.90 222.30 3,644.2 -436.7 -441.4 444.8 605.7 0.68 0.32 2.9 3,703.0 12.00 222.80 3,767.4 -436.7 -441.4 444.8 605.7 0.68 0.32 2.9 3,703.0 12.00 222.30 3,767.1 451.2 423.7 619.0 1.33 -1.25 2.11 3,802.0 11.70 219.80 3,798.4 456.1 428.0 625.4 1.39 0.00 -6.81 3,898.0 11.20 222.00 3,767.1 451.2 423.7 619.0 1.33 -1.25 2.11 3,802.0 11.70 219.80 3,798.4 456.1 440.0 636.0 636.1 1.5 0.66 4.80 4.90 3,995.0 11.60 222.00 3,767.1 451.2 423.7 619.0 1.33 -1.25 2.11 3,802.0 11.70 219.80 3,998.4	3,038.	0 10.70	220.80	2,991.0	-338.4	-313.7	461.4	1.05	-0.94	-2.50
3,133.0 10.50 222.70 3,084.4 -361.3 -325.3 478.8 0.46 0.00 2.55 3,164.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.66 3,196.0 10.20 225.90 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7: 3,228.0 10.70 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,228.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.1: 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.68 3,323.0 11.70 226.80 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -3.1: 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.8: 3,386.0 11.50 228.70 3,332.8 -384.5 -360.4 526.9 0.35 0.32 -0.6: 3,341.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.77: 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 4.0 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 222.80 3,488.2 407.7 -384.2 560.3 1.02 -0.94 1.8: 3,545.0 12.00 222.80 3,488.2 407.7 -384.2 560.3 1.02 -0.94 1.8: 3,576.0 11.60 224.00 3,581.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,576.0 11.80 224.00 3,581.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,576.0 11.80 224.00 3,581.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,576.0 11.80 224.00 3,581.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,575.0 11.80 222.30 3,641.6 426.8 401.5 586.0 1.70 0.97 6.7 3,703.0 12.00 222.80 3,642.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,575.0 11.80 224.00 3,581.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,575.0 11.80 222.20 3,581.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,575.0 11.80 222.20 3,581.2 421.9 -397.4 579.6 2.82 0.31 -1.22 3.8 3,575.0 11.90 222.30 3,674.2 436.7 441.4 441.8 605.7 0.68 0.32 2.99 3,783.0 11.20 222.70 3,735.8 446.3 441.4 441.8 605.7 0.68 0.32 2.99 3,783.0 11.20 222.70 3,735.8 446.3 441.4 441.8 605.7 0.68 0.32 2.99 3,783.0 11.20 222.70 3,735.8 446.3 441.9 436.2 638.2 0.65 4.13.9 0.00 6.8 3,783.0 11.70 222.00 3,767.1 451.2 423.7 619.0 1.33 -1.25 2.11 3,882.0 11.70 222.00 3,767.1 451.2 423.7 619.0 1.33 -1.25 2.11 3,882.0 11.70 222.00 3,767.1 451.2 423.7 619.0 1.33 -1.25 2.11 3,882.0 11.20 222.00 3,981.5 470.9 440.2 644.6 0.88 0.63 -3.1 4.20 4.20 0.	3,069.	0 10.50	222.10	3,021.5	-342.7	-317.5	467.1	1.01	-0.65	4.19
3,164.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.66 3,196.0 10.20 226.90 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.77 3,228.0 10.70 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,229.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.6 3,323.0 11.70 226.30 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -3.11 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.88 3,360.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.71 3,450.0 12.30 226.60 3,425.7 -397.9 -374.8 546.6	3,101.	0 10.50	221.90	3,053.0	-347.0	-321.4	472.9	0.11	0.00	-0.63
3,184.0 10.20 225.70 3,114.9 -355.3 -329.2 484.3 1.99 -0.97 9.6i 3,196.0 10.20 226.90 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7i 4.5i 4.5i 4.5i 4.5i 4.5i 4.5i 4.5i 4.5	3 133	0 10.50	222 70	3 084 4	-351.3	-325.3	478 R	0.46	0.00	2 50
3,196.0 102.0 226.90 3,146.4 -359.2 -333.3 490.0 0.66 0.00 3.7: 3,228.0 10.70 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,260.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 2.1: 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.6: 3,323.0 11.70 226.30 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -3.1: 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.8: 3,386.0 11.70 227.90 3,364.1 -388.8 -360.4 526.9 0.35 0.32 -0.6: 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.7: 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 4.0 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 223.40 3,456.9 402.8 -379.6 553.5 1.85 -0.63 -8.1: 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 1.8: 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8: 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.2: 3,640.0 11.80 219.20 3,681.2 -421.9 -397.4 579.6 2.82 0.31 1.37: 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.8: 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 1.25 -2.11 3,925.0 11.60 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 1.25 -2.11 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.9 3,957.0 11.60 220.90 3,933.3 -480.2 -446.0 650.6 1.15 -0.65 4.86 4,020.0 10.80 220.90 3,933.3 -480.2 -446.0 650.6 1.15 -0.65 4.86	•			•						9.68
3,228.0 10.70 227.80 3,177.9 -363.1 -337.6 495.8 1.64 1.56 2.8 3,260.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.66 3,323.0 11.70 226.50 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -3.11 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.86 3,386.0 11.50 226.70 3,332.8 -344.5 -360.4 526.9 0.35 0.32 -0.66 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.71 3,450.0 12.50 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 4.00 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.99 3,513.0 12.30 223.40 3,456.9 402.8 -379.6 553.5 1.85 -0.63 -8.11 3,545.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.87 3,640.0 11.80 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.87 3,640.0 11.80 224.00 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.22 3,799.0 11.70 222.30 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.37 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.11 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.11 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.11 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.11 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.11 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.11 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.11 3,830.0 11.70 229.00 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.25 2.11 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.07 3,880.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.07 3,880.1 -465.9 -460.0 650.6 1.15 -0.65 4.86 4.020.0 10.80 220.90 3,953.3 -475.6 -440.0 650.6 1.15 -0.65 4.86 4.020.0 10.80 220.90 3,953.3 -475.6 -440.0 650.6 1.15 -0.65 4.86 4.020.0 10.80 220.90 3,953.3 -										3.75
3,260.0 11.20 227.10 3,209.3 -367.3 -342.0 501.8 1.62 1.56 -2.11 3,291.0 11.60 227.30 3,239.7 -371.4 -346.5 508.0 1.30 1.29 0.66 3,223.0 11.70 226.30 3,271.0 -375.8 -351.2 514.4 0.70 0.31 -3.11 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.81 3,386.0 11.50 226.70 3,332.8 -384.5 -360.4 526.9 0.35 0.32 -0.68 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.71 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 -4.00 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.94 3,513.0 12.30 223.40 3,486.9 -402.8 -379.6 553.5 1.85 -0.63 -8.11 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.81 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.81 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.77 3,703.0 12.00 221.90 3,642.9 -417.0 -393.1 573.1 0.40 0.31 -1.22 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 1.37 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.91 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.25 2.11 3,830.0 11.70 229.80 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.25 2.11 3,830.0 11.70 219.80 3,788.4 -466.1 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.80 3,798.0 11.10 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,830.0 11.70 229.80 3,788.4 -466.1 -426.8 60.5.7 0.68 0.32 2.91 3,830.0 11.70 229.80 3,788.4 -466.1 -426.8 60.5.7 0.68 0.32 2.91 3,830.0 11.70 229.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,830.0 11.70 229.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,830.0 11.70 229.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,830.0 11.70 229.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,830.0 11.70 229.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,830.0 11										
3,291.0										-2.19
3,323.0 11.70 226.30 3,271.0 -375.8 -351.2 514.4 0,70 0.31 -3.1: 3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.8: 3,386.0 11.50 226.70 3,332.8 -384.5 -360.4 526.9 0.35 0.32 -0.6: 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.7: 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 -4.0 3,451.0 12.50 226.00 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.1: 3,513.0 12.30 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.8: 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.6 3,640.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1										
3,355.0 11.40 226.90 3,302.4 -380.2 -355.9 520.8 1.01 -0.94 1.86 3,366.0 11.50 226.70 3,332.8 -384.5 -360.4 526.9 0.35 0.32 -0.66 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.78 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.78 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 -4.00 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 223.40 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.13 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.88 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.29 3.8 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.7 3,703.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.7 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.80 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.22 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.99 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.25 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.15 3,830.0 11.70 229.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.86 3,830.0 11.70 229.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.86 3,830.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.25 3,985.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.15 4,840.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.25 3,985.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.15 4,840.0 11.50 220.20 3,961.9 -475.6 -444.0 650.6 1.15 -0.65 4.88 4,000.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 5.15 5.15 5.15 5.15 5.15 5.15 5.15										0.65
3,386.0 11.50 226.70 3,332.8 -384.5 -360.4 526.9 0.35 0.32 -0.66 3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3.77 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 -4.0 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 223.40 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.1 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.86 3,576.0 11.60 224.00 3,518.6 -412.3 -386.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.2 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.78 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.7 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.80 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.2 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 12.10 222.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 12.10 222.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.9 3,798.0 12.10 222.20 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 2.1 3,880.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.80 3,983.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.25 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.9 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.1 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.8 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.15										-3.13
3,418.0 11.70 227.90 3,364.1 -388.8 -365.1 533.4 0.98 0.63 3,78 3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 -4.00 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.96 3,513.0 12.30 223.40 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.11 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.81 3,578.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.21 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.7 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0										1.88
3,450.0 12.30 226.60 3,395.4 -393.3 -370.0 540.0 2.06 1.88 -4.00 3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.9 3,513.0 12.30 223.40 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.13 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.81 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.22 3,604.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.77 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.22 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.56 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.81 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.25 3,955.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.11 3,925.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.11 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.8 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.15										-0.65
3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.99 3,513.0 12.30 223.40 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.11 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.81 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.83 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.21 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.7 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6,7 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,766.0 12.00 223.20 3,704.5 -441.4 -410.4 599.3	3,418.	u 11.70	227.90	3,364.1	-388.8	-365.1	533.4	0.98	0.63	3.75
3,481.0 12.50 226.00 3,425.7 -397.9 -374.8 546.6 0.77 0.65 -1.99 3,513.0 12.30 223.40 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.11 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.81 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.83 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.21 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.73 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.7 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 <td>3,450.</td> <td>0 12.30</td> <td>226.60</td> <td>3,395.4</td> <td>-393.3</td> <td>-370.0</td> <td>540.0</td> <td>2.06</td> <td>1.88</td> <td>-4.06</td>	3,450.	0 12.30	226.60	3,395.4	-393.3	-370.0	540.0	2.06	1.88	-4.06
3,513.0 12.30 223.40 3,456.9 -402.8 -379.6 553.5 1.85 -0.63 -8.13 3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.86 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.26 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.79 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.80 3,766.0 12.00 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.20 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 <td>3,481.</td> <td>0 12.50</td> <td>226.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-1.94</td>	3,481.	0 12.50	226.00							-1.94
3,545.0 12.00 222.80 3,488.2 -407.7 -384.2 560.3 1.02 -0.94 -1.86 3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.83 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.25 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.75 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,766.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.22 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.99 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4	3,513.	0 12.30	223.40	3,456.9	-402.8	-379.6	553.5		-0.63	-8.13
3,576.0 11.60 224.00 3,518.6 -412.3 -388.6 566.6 1.51 -1.29 3.8 3,608.0 11.70 223.60 3,549.9 -417.0 -393.1 573.1 0.40 0.31 -1.2; 3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.7; 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.8 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.2 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.96 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.5 3,862.0 11.70 229.80 3,767.1 -451.2 -423.7 619.0	3,545.	0 12.00	222.80	3,488.2						-1.88
3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.73 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.21 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.96 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.51 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.19 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.81 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7	3,576.	0 11.60	224.00	3,518.6	-412.3	-388.6	566.6		-1.29	3.87
3,640.0 11.80 219.20 3,581.2 -421.9 -397.4 579.6 2.82 0.31 -13.73 3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.77 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.81 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.21 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.96 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.51 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.19 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.81 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7	3 608	0 11.70	223.60	3 549 9	_417 0	_202 4	573 1	0.40	0.31	_1 25
3,671.0 12.10 221.30 3,611.6 -426.8 -401.5 586.0 1.70 0.97 6.7 3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.80 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.20 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.90 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.55 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.19 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.86 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.29 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2										
3,703.0 12.00 221.90 3,642.9 -431.8 -406.0 592.6 0.50 -0.31 1.86 3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.29 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.99 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.55 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.19 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.86 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.29 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6										
3,735.0 11.90 222.30 3,674.2 -436.7 -410.4 599.3 0.41 -0.31 1.21 3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.96 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.55 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.19 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.81 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.29 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.94 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.11 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 <td></td>										
3,766.0 12.00 223.20 3,704.5 -441.4 -414.8 605.7 0.68 0.32 2.90 3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.50 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.11 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.81 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.25 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.94 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.11 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.86 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.25</td>										1.25
3,798.0 12.10 222.70 3,735.8 -446.3 -419.3 612.4 0.45 0.31 -1.51 3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.19 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.80 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.29 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.11 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.86 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.16										
3,830.0 11.70 222.00 3,767.1 -451.2 -423.7 619.0 1.33 -1.25 -2.19 3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.80 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.29 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.19 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.84 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.19										2.90
3,862.0 11.70 219.80 3,798.4 -456.1 -428.0 625.4 1.39 0.00 -6.81 3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.29 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.94 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.11 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.84 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.15										-1.56
3,893.0 11.80 219.40 3,828.8 -460.9 -432.0 631.7 0.42 0.32 -1.21 3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.94 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.11 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.88 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.15										-2.19
3,925.0 11.60 219.70 3,860.1 -465.9 -436.2 638.2 0.65 -0.63 0.99 3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.13 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.84 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.15										-6.88
3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.13 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.84 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.15	3,893.0	11.80	219.40	3,828.8	-460.9	-432.0	631.7	0.42	0.32	-1.29
3,957.0 11.40 218.70 3,891.5 -470.9 -440.2 644.6 0.88 -0.63 -3.13 3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.84 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.15	3,925.0	0 11.60	219.70	3,860.1	-465.9	-436.2	638.2	0.65	-0.63	0.94
3,988.0 11.20 220.20 3,921.9 -475.6 -444.0 650.6 1.15 -0.65 4.8 4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.19										-3.13
4,020.0 10.80 220.90 3,953.3 -480.2 -448.0 656.7 1.32 -1.25 2.19										4.84
· · · · · · · · · · · · · · · · · · ·										2.19
										1.88
4,083.0 10.50 220.50 4,015.2 -489.0 -455.7 668.4 0.88 -0.65 -3.23										-3.23

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site: Well: SECTION 24 E-25-8-16

Wellbore:

Wellbore #1

Design:

Actual

Local Co-ordinate Reference:

TVD Reference:

.

Well E-25-8-16

.

WELL @ 5461.0ft (NEWFIELD RIG #2)
WELL @ 5461.0ft (NEWFIELD RIG #2)

North Reference:

True

Survey Calculation Method:

Minimum Curvature

Database:

MD Reference:

EDM 2003.21 Single User Db

rvey											
	Measured			Vertical			Vertical	Dogleg	Build	Turn	
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate	
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)	
						7.5					
	4,115.0	10.30	221.80	4,046.7	-493.4	-459.5	674.2	0.96	-0.63	4.06	
	4,147.0	10.00	224.80	4,078.2	-497.5	-463.3	679.8	1.90	-0.94	9.38	
	4,178.0	10.00	224.20	4,108.7	-501.3	-467.1	685.2	0.34	0.00	-1.94	
	4,210.0	10.00	224.70	4,140.2	-505.3	-471.0	690.8	0.27	0.00	1.56	
	4,242.0	9.70	226.20	4,171.7	-509.1	-474.9	696.2	1.23	-0.94	4.69	
	4,273.0	9.80	226.20	4,202.3	-512.8	-478.7	701.5	0.32	0.32	0.00	
	4,305.0	9.90	224.90	4,233.8	-516.6	-482.6	706.9	0.76	0.32	-4.06	
	4,337.0	10.00	224.30	4,265.3	-520.5	-486.5	712.5	0.45	0.31	-1.88	
	4,368.0	10.10	224.80	4,205.5	-524.4	-490.3	717.9	0.43	0.31	1.61	
	4,500.0	10.10	224.00	4,233.3	-524.4	-490.5	111.5	0.43	0.52	1.01	
	4,400.0	10.30	224.60	4,327.4	-528.4	-494.3	723.5	0.63	0.63	-0.63	
	4,432.0	10.20	226.50	4,358.9	-532.4	-498.3	729.2	1.10	-0.31	5.94	
	4,463.0	10.40	226.60	4,389.4	-536.2	-502.4	734.8	0.65	0.65	0.32	
	4,495.0	10.40	225.60	4,420.8	-540.2	-506.5	740.5	0.56	0.00	-3.13	
	4,527.0	10.60	225.30	4,452.3	-544.3	-510.7	746.4	0.65	0.63	-0.94	
	4,559.0	10.50	224.30	4,483.7	-548.5	-514.8	752.2	0.65	-0.31	-3.13	
	4,590.0	10.50	224.00	4,514.2	-552.5	-518.7	757.9	0.18	0.00	-0.97	
	4,622.0	10.20	224.20	4,545.7	-556.6 500.7	-522.7	763.6	0.94	-0.94	0.63	
	4,654.0	10.00	223.90	4,577.2	-560.7	-526.6	769.2	0.65	-0.63	-0.94	
	4,686.0	10.10	224.00	4,608.7	-564.7	-530.5	774.8	0.32	0.31	0.31	
	4,717.0	10.10	222.50	4,639.2	-568.7	-534.2	780.2	0.85	0.00	-4.84	
	4,749.0	9.90	224.00	4,670.8	-572.7	-538.1	785.8	1.03	-0.63	4.69	
	4,781.0	10.00	225.00	4,702.3	-576.6	-541.9	791.3	0.62	0.31	3.13	
	4,812.0	10.20	225.20	4,732.8	-580.5	-545.8	796.8	0.66	0.65	0.65	
	4,843.0	10.10	224.10	4,763.3	-584.4	-549.6	802.2	0.70	-0.32	-3.55	
	4,876.0	10.00	225.60	4,795.8	-588.5	-553.7	808.0	0.85	-0.30	4.55	
	4,907.0	10.20	223.30	4,826.3	-592.3	-557.5	813.4	1.45	0.65	-7.42	
	4,939.0	10.20	224.50	4,857.8	-596.4	-561.4	819.1	0.66	0.00	3.75	
	4,971.0	10.70	224.30	4,889.3	-600.6	-565.5	824.9	1.57	1.56	-0.63	
	5,002.0	11.20	225.60	4,919.7	-604.7	-569.6	830.8	1.80	1.61	4.19	
	5,034.0	11.10	224.60	4,951.1	-609.1	-574.0	837.0	0.68	-0.31	-3.13	
	5,066.0	11.30	223.90	4,982.5	-613.5	-578.4	843.2	0.76	0.63		
		11.00	224.30		-617.9			1.00	-0.97	-2.19	
	5,097.0			5,012.9		-582.5	849.2			1.29	
	5,129.0	11.00	222.30	5,044.3	-622.3	-586.7	855.3	1.19	0.00	-6.25	
	5,160.0	11.20	222.10	5,074.8	-626.7	-590.7	861.2	0.66	0.65	-0.65	
	5,192.0	11.00	224.20	5,106.2	-631.2	-594.9	867.4	1.41	-0.63	6.56	
	5,224.0	11.10	223.40	5,137.6	-635.6	-599.2	873.5	0.57	0.31	-2.50	
	5,255.0	11.40	222.90	5,168.0	-640.1	-603.3	879.6	1.02	0.97	-1.61	
	5,287.0	11.70	223.10	5,199.3	-644.7	-607.7	886.0	0.95	0.94	0.63	
	5,319.0	11.40	222.50	5,230.7	-649.4	-612.0	892.4	1.01	-0.94	-1.88	
				•							
	5,350.0	11.00	221.80	5,261.1	-653.9	-616.1	898.4	1.36	-1.29	-2.26	
	5,382.0	10.60	222.50	5,292.5	-658.3	-620.1	904.4	1.32	-1.25	2.19	
	5,386.7	10.59	222.62	5,297.2	-659.0	-620.7	905.3	0.55	-0.32	2.48	
	E-25-8-16 TG	Т									
	5,414.0	10.50	223.30	5,324.0	-662.6	-624.1	910.3	0.55	-0.31	2.50	
	5,445.0	10.50	221.40	5,354.5	-666.8	-627.9	915.9	1.12	0.00	-6.13	
	5,477.0	10.70	221.10	5,385.9	-671.2	-631.8	921.8	0.65	0.63	-0.94	
	5,509.0	10.50	222.20	5,417.4	-675.6	-635.7	927.7	0.89	-0.63	3.44	
	5,540.0	10.10	223.10	5,447.9	-679.7	-639.4	933.2	1.39	-1.29	2.90	
	5,572.0	9.70	224.50	5,479.4	-683.7	-643.3	938.7	1.46	-1.25	4.38	
	5,604.0	10.00	223.20	5,510.9	-687.6	-647.0	944.2	1.17	0.94	-4.06	
	5,635.0	9.80	223.40	5,541.5	-691.5	-650.7	949.5	0.65	-0.65	0.65	
	5,667.0	9.70	223.60	5,573.0	-695.4	-654.4	954.9	0.03	-0.31	0.63	
	•	9.80									
	5,699.0		224.50	5,604.5	-699.3	-658.2	960.4	0.57	0.31	2.81	

NEWFIELD

PayZone Directional Services, LLC.

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site: Well: SECTION 24 E-25-8-16

Wellbore: Design:

Wellbore #1 Actual

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well E-25-8-16

WELL @ 5461.0ft (NEWFIELD RIG #2)

WELL @ 5461.0ft (NEWFIELD RIG #2)

Minimum Curvature

EDM 2003.21 Single User Db

y									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
5,762.0	10.00	225.80	5,666.6	-707.0	-665.9	971.2	0.58	0.31	2.81
5,794.0	10.10	226.40	5,698.1	-710.9	-669.9	976.8	0.45	0.31	1.88
5,825.0	10.30	224.90	5,728.6	-714.7	-673.8	982.3	1.07	0.65	-4.84
5,857.0	10.40	226.10	5,760.1	-718.7	-677.9	988.0	0.74	0.31	3.75
5,889.0	10.60	226.60	5,791.6	-722.8	-682.1	993.8	0.69	0.63	1.56
5,920.0	10.70	226.30	5,822.0	-726.7	-686.3	999.5	0.37	0.32	-0.97
5,952.0	10.40	226.40	5,853.5	-730.7	-690.5	1,005.4	0.94	-0.94	0.31
5,984.0	10.00	226.00	5,885.0	-734.7	-694.6	1,011.1	1.27	-1.25	-1.25
6,015.0	10.60	226.50	5,915.5	-738.5	-698.6	1,016.6	1.96	1.94	1.61
6,047.0	10.90	229.00	5,946.9	-742.5	-703.0	1,022.5	1.73	0.94	7.81
6,079.0	11.10	228.50	5,978.3	-746.5	-707.6	1,028.6	0.69	0.63	-1.56
6,111.0	10.70	227.90	6,009.7	-750.6	-712.1	1,034.6	1.30	-1.25	-1.88
6,142.0	10.30	227.20	6,040.2	-754.4	-716.3	1,040.3	1.35	-1.29	-2.26
6,174.0	10.20	225.80	6,071.7	-758.3	-720.4	1,046.0	0.84	-0.31	-4.38
6,206.0	10.70	223.20	6,103.2	-762.4	-724.5	1,051.8	2.15	1.56	-8.13
6,238.0	10.90	222.70	6,134.6	-766.8	-728.6	1,057.8	0.69	0.63	-1.56
6,270.0	10.70	223.90	6,166.1	-771.2	-732.7	1,063.8	0.94	-0.63	3.75
6,301.0	10.90	224.40	6,196.5	-775.4	-736.7	1,069.6	0.71	0.65	1.61
6,333.0	10.70	225.60	6,227.9	-779.6	-741.0	1,075.6	0.94	-0.63	3.75
6,365.0	10.60	225.80	6,259.4	-783.7	-745.2	1,081.5	0.33	-0.31	0.63
6,396.0	10.60	225.90	6,289.9	-787.7	-749.3	1,087.2	0.06	0.00	0.32
6,428.0	10.40	224.72	6,321.3	-791.8	-753.5	1,093.0	0.92	-0.63	-3.69
6,460.0	10.40	226.00	6,352.8	-795.9	-757.6	1,098.8	0.72	0.00	4.00
6,491.0	10.20	226.80	6,383.3	-799.7	-761.6	1,104.3	0.79	-0.65	2.58
6,523.0	10.20	224.90	6,414.8	-803.6	-765.6	1,110.0	1.05	0.00	-5.94
6,555.0	9.80	226.50	6,446.3	-807.5	-769.6	1,115.5	1.52	-1.25	5.00
6,606.0	9.90	224.90	6,496.6	-813.6	-775.9	1,124.2	0.57	0.20	-3.14
6,652.0	9.90	223.60	6,541.9	-819.3	-781.4	1,132.1	0.49	0.00	-2.83
6,701.0	9.90	223.60	6,590.1	-825.4	-787.2	1,140.6	0.00	0.00	0.00
6,705.0	9.90	223.60	6,594.1	-825.9	-787.7	1,141.2	0.00	0.00	0.00

Wellbore Targets									
Target Name - hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	Latitude	Longitude
E-25-8-16 TGT - actual wellpath m - Circle (radius 75.		0.00 at 5386.7ft M	5,300.0 D (5297.2 T	-647.0 VD, -659.0 N,	-611.4 -620.7 E)	7,206,895.04	2,038,436.80	40° 5′ 45.966 N	110° 4' 37.708 W

Checked By:	Approximat Dist	Data
Checked by.	Approved By:	Date:
_		

Project: USGS Myton SW (UT)

Site: SECTION 24 Well: E-25-8-16 Wellbore: Wellbore #1

SURVEY: Actual

FINAL SURVEY REPORT

Azimuths to True North Magnetic North: 11.50°

Magnetic Field Strength: 52478,5snT Dip Angle: 65,88° Date: 2009/12/11 Model: IGRF200510

Design: Actual (E-25-8-16/Wellbore #1)

Created By: Jim hudson Date: 15:57, February 24 2011 THIS SURVEY IS CORRECT TO THE BEST OF MY

KNOWLEDGE AND IS SUPPORTED BY ACTUAL FIELD DATA

Daily Activity Report

Format For Sundry MON BUTTE E-25-8-16 12/1/2010 To 4/28/2011

MON BUTTE E-25-8-16

Waiting on Cement

Date: 1/30/2011

Ross #29 at 308. Days Since Spud - On 1-29-11 Ross # 29 spud and drilled 310' of 12 1/4" hole, P/U and run 7 jts. Of 8 5/8" 24# J55 csg - yield, returned 5 bbls to pit, bump plug to 120 psi, BLM and State were notified via email - set@308.15. On 1-30-11 cement w/ BJ w/ 160sks of Class G+2%KCL+.25#CF mixed @ 15.8ppg and 1.17

Daily Cost: \$0

Cumulative Cost: \$31,360

MON BUTTE E-25-8-16

Rigging Up

Date: 2/16/2011

NDSI #2 at 308. 0 Days Since Spud - Rig Down

Daily Cost: \$0

Cumulative Cost: \$36,085

MON BUTTE E-25-8-16

Drill 7 7/8" hole with fresh water

Date: 2/17/2011

NDSI #2 at 1602. 1 Days Since Spud - P/U BHA as follows, Varel VM 616R 7 7/8" PDC Bit, Hunting 7/8 4.8 stage .33 rev 1.5 degree Fixed - Everthing Tested Ok. - Blind Rams, Choke Line & Manifold To 2000 psi for 10 Mins, Test Surface Casing To 1500 psi for 30 Mins - 2/16/11 MIRU Set Surface Equipment W/Marcus Liddell Trucking, (15'Move From P-24-8-16) - Mud Motor, 1x30' Monel DC, 1x4.5' Double Gap Sub, 1x2' Index Sub, 1x5'Pony, Tag Cement @ 265' - Drill 7 7/8" Hole From 265' To 1602' WOB 12,000 lbs, TRPM 168, GPM 344, AVG ROP 103.5 fph - No H2s Reoported Last 24 Hrs. - Boiler 12 hrs - Accepted Rig @ 12:30 PM on 2/16/11. R/U B&C Quick Test, Test Upper Kelly Valve, Safety Valve, Pipe Rams

Daily Cost: \$0

Cumulative Cost: \$73,923

MON BUTTE E-25-8-16

Drill 7 7/8" hole with fresh water

Date: 2/18/2011

NDSI #2 at 4580. 2 Days Since Spud - Drill 7 7/8" Hole From 2394' To 4580' WOB 12,000 lbs,TRPM 168,GPM 344, AVG ROP 115 fph - Rig service. Function test BOP and crown-o-matic - Drill 7 7/8" Hole From 1602' To 2394' WOB 12,000 lbs,TRPM 168,GPM 344, AVG ROP 176 fph - No H2S Reported.

Daily Cost: \$0

Cumulative Cost: \$112,044

MON BUTTE E-25-8-16

Drill 7 7/8" hole with fresh water

Date: 2/19/2011

NDSI #2 at 6200. 3 Days Since Spud - No H2S reported - Drill 7 7/8" Hole From 5119' To 6200' WOB 12,000 lbs,TRPM 168,GPM 344, AVG ROP 65.2 fph - Rig service. Function test BOP and crown-o-matic - Drill 7 7/8" Hole From 4580' To 5119' WOB 12,000 lbs,TRPM 168,GPM 344, AVG ROP 77 fph

Daily Cost: \$0

Cumulative Cost: \$146,241

MON BUTTE E-25-8-16

Running casing

Date: 2/20/2011

NDSI #2 at 6705. 4 Days Since Spud - Rig up casing crew and run casing - Run 157 jts 5 1/2" J55 15.50# casing set at 6691'/KB - Circulate and wait on BJ. Road conditions icy, slick and snow packed. BJ would not travel on - highway until conditions improved. - Pump 300 sack PLII+3%KCL+5#CSE+.5#CF+5#KOL+FP+SF 11ppg 3.24 yield. Then pump 400 sacks -50:50:2+3%KCL+.5%EC-1+.05#SF+.3SMS+FP-6L 14.4ppg and 1.24 yield - Nipple down and set 5 1/2" slips w/ 92,000# tension - Clean mud tanks. Release rig at 1800 2/20/2011. - Test 5 1/2" pipe rams to 2000 psi for ten min. Test ok. - R/U PSI Log with tripple combo suite at 30'/min. 6690' to 4522. - Lay down DP and BHA - Check flow at 4500' Well flowing at 15 gal/min. Spot 200 bbls of 10# brine. No flow. - Lay down pipe and check flow. Well flowing at 15 gal/min. Spot 200 bbls of 10# brine. No flow. - Circulate - Drill 7 7/8" Hole From 6200' To 6705' WOB 12,000 lbs,TRPM 168,GPM 344, AVG ROP 59.41 fph - Clean mud tanks. Release rig at 1800 2/20/2011. - Nipple down and set 5 1/2" slips w/ 92,000# tension - 50:50:2+3% KCL+.5%EC-1+.05#SF+.3SMS+FP-6L 14.4ppg and 1.24 yield - Pump 300 sack PLII+3% KCL+5#CSE+.5#CF+5#KOL+FP+SF 11ppg 3.24 yield. Then pump 400 sacks - highway until conditions improved. - Circulate and wait on BJ. Road conditions icy, slick and snow packed. BJ would not travel on - Run 157 its 5 1/2" J55 15.50# casing set at 6691'/KB - Rig up casing crew and run casing - Test 5 1/2" pipe rams to 2000 psi for ten min. Test ok. - R/U PSI Log with tripple combo suite at 30'/min. 6690' to 4522. - Lay down DP and BHA - Check flow at 4500' Well flowing at 15 gal/min. Spot 200 bbls of 10# brine. No flow. - Lay down pipe and check flow. Well flowing at 15 gal/min. Spot 200 bbls of 10# brine. No flow. - Drill 7 7/8" Hole From 6200' To 6705' WOB 12,000 lbs,TRPM 168,GPM 344, AVG ROP 59.41 fph - Circulate

Finalized Daily Cost: \$0

Cumulative Cost: \$198,392

Pertinent Files: Go to File List